
NASA-CR-190706

|: ENTER FOR

CCMS-92-23
VPI-E-92-20

(-' OMPOSITE MATERIALS

AND STRUCTURES

3

:::::::::

i!iiiiiil

/

/

Optimal Design of Geodesically Stiffened
Composite Cylindrical Shells

.. G. Gendron
_ Z. Gtirdal
:!:i:!:i

,:,:.:+:
:.:.:,:.:,
i_iii!i_i!

_i_i!iiiiii!:!:!i!
i_i_i_i::]::i::i_i::i_i_iiiii:.,--

::::::::::

iiii:_iiiii
::::;:::::
:_:_:;:_:;

ii}}iiii};

i;!::iii::i $,_
::::::::::

/ / BLACKSBURG, VIRGINIA
/ / / _ 24061

(NASA-CR-190700) OPTIMAL DESIGN OF

GEODESICALLY STIFFENED COMPOSITE

CYLINDRICAL SHELLS Report, Sep°

1989 - Sep. 1991 (Virginia
= Polytechnic Inst. and State Univ.)

222 p

N92-32235

Unclas

August 1992

G3/39 0116939



t



College of Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

August 1992

VPI-E-92-20

CCMS-92-23

Optimal Design of Geodesically Stiffened

Composite Cylindrical Shells

G. Gendron'
Z, GiJrdaF

Performance period:

September 1989 - September 1991

Grant NAG-I-643

Prepared for: Aircraft Structuers Branch

NASA Langley Research Center
Hampton, VA 23665-5225

1 Graduate Student, currently with SPAR Aerospace Ltd.

2 Associate Professor, Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State Universily





ABSTRACT

An optimization system based on the finite element code CSM Testbed and

the optimization program ADS is described. The optimization system can be used

to obtain minimum-weight designs of composite stiffened structures. Ply thick-

nesses, ply orientations, and stiffener heights can be used as design variables.

Buckling, displacement, and material failure constraints can be imposed on the

design. The system is used to conduct a design study of geodesically stiffened

shells. For comparison purposes, optimal designs of unstiffened shells and shells

stiffened by rings and stringers are also obtained. Trends in the design of

geodesically stiffened shells are identified. An approach to include local stress

concentrations during the design optimization process is then presented. The

method is based on a global/local analysis technique. It employs spline interpo-

lation functions to determine displacements and rotations from a global model

which are used as "boundary conditions" for the local model. The organization of

the strategy in the context of an optimization process is described. The method is

validated with an example.
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Chapter 1

Introduction

In the aerospace industry, the need for weight efficient structures has led to the

adoption of the stiffening concept for many structural components. The use of stiffeners

results in a significant increase of stiffness for a minimum amount of added material.

In most metallic structures, stiffening is provided by an array of orthogonal or near

orthogonal members fabricated independently of the skin and assembled with fasteners.

With the advent of composite materials, designers have instinctively been using the same

practice to stiffen flat and cylindrical panels.

However, various considerations, mainly related to the cost-effective manufacturing

of composite su'uctures, suggest that other stiffening concepts might be structurally as

efficient and more economical to manufacture. In recent years, concepts that employ stiff-

eners following the geodesic lines (a geodesic line is the shortest line between two points

that lies in a given surface) have been considered, and some examples of geodesically

stiffened structures are shown in Fig. 1.1. The main advantage of this stiffening pattern,

compared to more conventional arrangements, is that geodesically stiffened structures

can be manufactured using the filament winding technique, a cost-effective process that

offers enormous potential in terms of reductions in number of parts and fasteners. This

is particularly true for aircraft fuselage structures which are large continuous cylindrical

shapes that lend themselves particularly well to filament winding.

One variant of the geodesic stiffening concept that has received a great deal of atten-

tion in the case of composite structures is the "isogrid" pattern [1-2]. With this concept,

stiffening is provided by an array of stiffeners that form equilateral triangles. Research

on isogrid-stiffened configurations has shown that the multiple load paths resulting from



a - Open-web Truss.

b - Flat Panel.

°

c- Cylindrical Shell.

Fig. 1.1 - Examples of Geodesically Stiffened Structures.
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the redundancy of the stiffening create a highly damage-tolerant structure. Also, the

equilateral triangular grid of stiffeners displays an overall isotropic nature. Therefore,

many existing analytical solutions based on a smeared representation of the skin-stiffener

assembly can still be used. However, it has been noted [2] that for certain applications,

the uniformity of configuration and the isotropic stiffening may result in weight penalties.

Hence, the need to study the geodesic stiffening concept which allows the stiffeners to

intersect at an arbitrary angle. As such, this additional freedom provides the designer

with more flexibility, while retaining all the benefits of the isogrid stiffening pattern in

terms of structural efficiency, ease of manufac_g, and damage tolerance.

Although the geodesic stiffening concept appears promising, more work must be

done to better measure its potential to become a valid alternative to the more traditional

stiffening concepts. This is the subject of the present study which considers the optimal

design of geodesically stiffened composite cylindrical shells. The overall objective of

this work is to compare the efficiency of the geodesically stiffened concept to more

traditional stiffening patterns in the case of aircraft fuselages. The specific goals are:

1. To develop a finite element based optimization system that can be used to design

complex structural configurations such as geodesically stiffened shells subjected to

combined loading conditions.

2. To characterize the structural behavior of geodesically stiffened cylindrical shells.

3. To obtain optimal designs for different unstiffened and stiffened shell configura-

tions subjected to axial compression, torsion and a combination of compression and

torsion.

4. To compare the optimal designs obtained with the different configurations, as well

as identify trends in the design of geodesically stiffened shells.

5. To develop a methodology for the incorporation of local stress constraints into a

design process.

3



The organizationof the remainderof this dissertationis asfollows. First, the con-

figurationsthat will beconsideredin thepresentstudyarepresentedin Chapter2 along

with a review of the previouswork that hasbeenpublishedon the analysisanddesign

of geodesicaltystiffenedshelIs. Then, in Chapter3, the new optimization systemthat

hasbeendevelopedin thecourseof thisresearchinitiative is presented.Due to thecom-

plex geometryof thestructuresthat areconsideredin thepresentstudy,theoptimization

systemhasbeen built arounda finite elementcode. Until recently, the incorporation

of this method into an optimization processwas consideredtoo expensivedue to the

largenumberof analysesrequiredto achievethe optimalconfiguration. However,recent

developmentsin the fields of structuraloptimization,numericalanalysisand computer

hardware,aswell astheversatility of theresultingdesigntool tendto makethis approach

moreandmore attractive.

The presentationof the optimization systemis followed in Chapter4 by the de-

scriptionof the modelsthat will beusedin the designof the unstiffened,longitudinally

and ring stiffened, as well as geodesicallystiffened shell configurationsthat will be

consideredin the presentstudy. For severalconfigurations,the analysisof a nominal

designis performedandmeshrefinementrequirementsareinvestigated.Also, character-

isticsof thebehaviorof geodesicallystiffened shells under static loading are highlighted.

Then, in Chapter 5, the results of the design study are presented and used to identify

trends and evaluate the efficiency of the geodesic stiffening pattern compared to the other

configurations studied.

In Chapter 6, the modifications made to the optimization system presented to in-

corporate a global/local analysis strategy into the design process are presented and the

resulting implementation is validated on an example. Results of the research work are

summarized in Chapter 7, and concluding remarks are provided.

4
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Chapter 2

Design of Geodesically Stiffened Shells

As mentioned in the introduction, the application of the geodesic stiffening concept

to composite structural components results in a damage tolerant structure that can also be

tailored and cost-effectively manufactured. To investigate the concept further and com-

pare the efficiency of this stiffening pattern to more conventional stiffener arrangements,

a detailed design study of a portion of an aircraft fuselage is performed. In Section 2.1,

the geometry and loads for a typical aircraft fuselage are introduced. Previous works

published on the analysis and design of geodesically stiffened shells are reviewed in

Section 2.2. Finally, in Section 2.3, the scope of the present study is established.

2.1 Geodesically Stiffened Cylindrical Shells

The application of the geodesic stiffening concept to aircraft fuselages is promising.

This is due to the automated filament winding process that can be used to cost-effectively

manufacture such structures. The portion of the fuselage under consideration is similar to

the section of a C-141 aircraft immediately after the wing box. The design of a fuselage

is impacted by its functional as well as its strength, stiffness and life requirements. Loads

due to flight maneuvers, cabin pressurization, and forces due to engines, fuel load, etc ...

result in bending, twisting and membrane stretching of the fuselage structure.

For the present study, the fuselage is modelled as a circular cylinder of 100 in

length and 170 in diameter. The cylinder incorporates a grid of integral blade stiffeners

of constant rectangular cross-section. In view of the proposed manufacturing technique,

which includes an automated winding process, the stiffeners are assumed to be composed

of unidirectional material oriented along each stiffener axis. Because of aerodynamic

5
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requirements, all the configurations studied are internally stiffened. Regarding bound-

ary conditions, the actual degree of elastic restraint against edge rotation and expansion

provided by the surrounding structure is unknown and no doubt complex. To provide

realistic restraints, a ring of fixed dimensions (0.2 in thick and 1.5 in high) has been

placed at each end of the cylinder. The role of the rings is to restrain the radial expan-

sion and rotation about the circumferential direction. Further discussion of the specific

boundary conditions used for each configuration and load case may be found in Section

4.2. Finally, the applied loads considered are uniform axial compression, torsion, and

combined axial compression and torsion. All the loadings are introduced by specifying

nonzero displacement boundary conditions for all the skin and ring nodes located at each

end of the she11. Specifying the axial displacement of these nodes results in a consider-

able amount of rotational restraint with respect to the circumferential direction at each

end of the shell.

Three configurations are considered for the fuselage: unstiffened shell, shell stiffened

by rings and stringers (referred to as the "conventionally stiffened" configuration in the

remainder of the present study), and geodesically stiffened shell. Because fuselage struc-

tures are typically made of a thin skin reinforced by stiffeners, their buckling resistance

is a major concern. This is illustrated by several of the papers that are reviewed in the

next section as well as by the design study results that will be presented in Chapter 5.

The performance of the ge_sically stiffened arrangement will be evaluated by direct

comparison to the unstiffened, and conventionally stiffened shells. The terminology

associated with the analysis and the design of stiffened shells is shown in Fig. 2.1.

2.2 Literature Review

In this section, papers published on the analysis and the design of geodesically

stiffened structures are reviewed. Papers dealing with the analysis and the design of

6



\V_ Cylinder axis

\

height of the spiral stiffeners is h

a - Geodesically Stiffened Shell.

l Cylinder axis

height of the rings is h r

height of the stringers is h s

\
rings

stringers

b - Shell Stiffened by Rings and Stringers.

Fig. 2.1 - Cylinder Configurations.
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unstiffened and conventionally stiffened shells are not discussed here. Results of an

optimal design of unstiffened cylindrical shells are given in Ref. [3]. A brief review of

the vast literature on the design of stiffened shells is given by Gajewski and Zyczkowski

[4] who also give an extensive bibliography on the subject.

To date, only a few papers have been published on the subject of geodesically

stiffened she!Is, in many of these papers, simple computational strategies were used.

For example, in Refs. [5-6], the properties of the stiffeners were averaged over the

spacing so that the discrete nature of the stiffeners was neglected.

One of the earliest papers considering the geodesic stiffening concept is by Meyer [5]

who studied 450 integrally milled-out stiffeners. The primary motivation for considering

this type of stiffening was to exclude the buckling modes that occur between hoop

reinforcements for ring and stringer stiffened shells. The material was isotropic and the

stiffening was assumed:to be continuously distributed over the shell reference surface.

Test results were presented to verify the buckling loads obtained and no design study

was performed.

In 1969, Soong [6] derived buckling equations for cylinders made of isotropic mate-

rial and with stiffeners inclined at an arbitrary angle with respect to the axis of the shell.

In his case, the primary motivation for the study was also related to the design of more

efficient structures. In his formulation, discreteness of the stiffeners was also neglected.

Several comparisons between conventionally and spirally stiffened shells using arbitrarily

chosen dimensions were presented. Correlation of the theory with 12 test results for 45*

stiffened cylinders under bending and compression was presented. Based on numerical

results, the author concluded that, on equal stiffener weight or equal buckling strength

bases, the spirally stiffened cylinders were about equally efficient compared to the ring

and stringer stiffened cylinders for axial compression and pure bending loads. Under

torsion and pressure loads, however, the spirally stiffened cylinders were superior.



Also in 1969,LeeandLu [7] presentedastudyon thegeneralinstabilityof inclined-

stiffenedisotropic cylindersunderbending.For the first time, the discretenatureof the

stiffenerswas considered.They showedthat the optimum inclination varies with the

rigidity of the stiffeners,and that theoretically,the buckling load should increasewith

the rigidity of thesemembers. However, test data showedthat the buckling strength

increasedlittle as the rigidity of the stiffenersbecamelarge. This discrepancywas

attributedto imperfectionsin themorestronglystiffenedcylinderswhich likely produced

local rather that global buckling modes.

In 1970, Pappasand Amba-Rao [8] noted that although Soong'scomparisons[6]

may indicate correct trends,they werenot basedon minimum weight designs. Conse-

quently,to allow for a more reaiistic evaluationof thedifferent stiffenerconfigurations,

a mathematicalprogrammingmethodwasusedto computeoptimal designsfor isotropic

ring and stringer stiffenedshells as well as spirally stiffenedshells. The shells were

subjected to a uniform compressive loading and a lateral pressure. Skin and stiffener

buckling were considered. Design studies performed using a shelI length of 165 in and

a radius of 60 in have shown that under pure axial compression, the optimal geodesic

shell presents stiffeners that are inclined at an angle of 45*. In the case of hydrostatic

pressure, angles of 90* were obtained, indicating that for this loading a ring stiffened

shell corresponds to the optimum configuration. In all cases, spirally stiffened shells

were inferior to shells with conventional-type stiffeners. The authors noted, however,

that the superiority of a particular configuration will depend on the shell parameters,

loading conditions and side constraints involved in the application, as well as on the

nature of the stiffener cross section.

in 1980, Karmakar [9] used the same overall shell dimensions and properties that

Pappas and Amba-Rao [8] used and performed a design study considering six types of

stiffener configurations, including 45* internal and external spiral stiffening. The shell

9
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was subjected to axial compression. Simple computational procedures that neglect the

discrete nature of the stiffeners were used to predict buckling between circumferential

stiffeners, local buckling of skin, local buckling of axial and spiral stiffeners, and yielding

of the cylinder material. The resutts indicate that outside stiffened cylinders were lighter

than their internally stiffened counterparts. For internally stiffened configurations, a

combination of rings, stringers, and spiral stiffeners resulted in the lightest configuration

followed by spiral type stiffening. Among all the stiffener configurations studied (being

internally or externally stiffened), spiral type outside stiffening gave the lightest design.

In all cases, stiffener spacing was considered as a design variable. In the case of spiral

stiffening, the optimum stiffener spacing was around 1.4 in with no significant difference

in the optimum stiffener spacing between internal and external stiffening.

As mentioned in the introductory chapter, in the case of composite structures, the

utilization of geodesic stiffeners actually eases the manufacturing process compared to

more conventional stiffener arrangements. Therefore, it was natural for the researchers

to consider this type of stiffening in the search for efficient structural concepts. Rehfield

and his co-workers [2,10] considered a variant of the geodesic stiffening called "isogrid"

stiffening for the design of composite flat panels and cylindrical shells. Their stiffening

concept used a repetitive equilateral triangular pattern of stiffening ribs. The name "iso-

grid" refers to the fact that the triangular grid behaves in a gross sense as an isotropic

material. Therefore, simple computational procedures were used to predict the static and

buckling responses of the stiffened structure. In their first paper [2], parametric studies

based on such procedures were used to design a 20 in diameter, continuous filament

advanced composite isogfid cylindrical shell. A quasi-isotropic skin of lamination se-

quence [-60/0/60]s was chosen and the stiffeners were made of unidirectional material.

For the final design, obtained from an extensive parametric study, the skin was 0.030 in

thick and the stiffeners were 0.058 in thick and 0.10 in high. The distance between two

_ 10
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stiffener intersections was 1.5 in. The critical buckling mode consisted of two longitu-

dinal half waves and six circumferential full waves. In a second paper [10], the problem

of determining the damage tolerance characteristics of composite isogrid smactures was

addressed. Since the stiffeners provide most of the bending stiffness, damage to these

members was considered. Beams and flat panels were tested. As expected, due to

the redundant nature of the iso_rid concept, good damage tolerance characteristics were

exhibited by the structures.

In Ref. [1], parametric design studies comparing the isogrid concept to other configu-

rations that can also be manufactured using a filament winding technique were presented.

Constraints on general instability,, skin buckling, and rib crippling were considered. For

general instability, constitutive relations for the stiffened sheU were found by smearing

out the stiffeners and representing the cylinder as a homogeneous shell. For local skin

buckling, the inter-stiffener skin section was treated as an orthotropic triangular plate

with simply-supported edges under in-plane loads. Finally, the buckling load for the

ribs was estimated using an approximate formula for the buckling of an orthotropic plate

with fixed ends and simply-supported and free edges. Results of the design studies con-

ducted on a C-130 fuselage barrel subjected to combined axial compression and shear

have shown that both the isogrid and orthogrid stiffening patterns result in savings over

the existing metal design. For the isogrid stiffening, skin laminates with a lamination

sequence of [0/± 60Is resulted in lighter designs compare to a [0/90/± 45]s sequence.

The best design was obtained for a skin thickness of 0.072 in and stiffeners of 0.13

in thick and 1.3 in high. The results also indicated that both the isogrid and orthogrid

stiffening concepts were weight competitive. However, the authors noted that the high

damage tolerance characteristics of the isogrid concept would make it more attractive

for aircraft fuselage applications.

In Ref. [11], equations predicting the buckling strength of cylindrical geodesic strut-

11



tures were presented. This represents the only available work on composite geodesic

cylindrical shells. The analysis assumed that the buckling wave extended over a rather

wide portion of the cylinder. Consequently, the cylinder behaved as if it were an or-

thotropic one and the discrete nature of the stiffeners was neglected. Based on numerical

results, the author concluded that if the pitch of the geodesic members was relatively

small compared to the cylinder radius, a cylindrical geodesic structure behaves as a uni-

form orthotropic-skin cylinder. On the other hand, if the buckling occurs over a localized

portion of the cylinder, not including the buckling of a member between adjacent joints,

finite element analysis must be used to predict the buckling load of the structure.

The geodesic concept was recently considered for impact-damage tolerant helicopter

tail structures [12-13]. In this case, a cylindrical composite open framework in which

the slender component bars follow the geodesics of the shell was considered. Only tor-

sional loading was studied, and both linear and nonlinear finite element analyses wer_

performed. It was found that using curved beam elements could produce a significant im-

provement in predicting the buckling torque over a previous analysis which used straight

elements. However, large errors were still obtained compared to experimental buckling

torques. Upon further detailed experimental testing of joints, the authors realized that

the discrepancy was principally caused by the joint flexibility resulting from the scissor-

ing of the crossing beams. It was found that this flexibility was an important factor in

the overaU behavior of the framework and to represent it, new models were set up. In

these models, the crossing members were offset and the torsional stiffness represented

with a 2-node beam element. Results obtained with these models were closer to the

experimental results.

In Ref. [14] the analysis and the optimal design of a geodesically stiffened wing

fib panel was performed. Through the use of Lagrange multipliers, the buckling load

of rgctangular orthotropic plates with a number of oblique stiffeners was calculated

12



without smearing the stiffeners. Design constraintsconsideredin the analysiswere

global buckling of the panelassembly,local crippUng of the stiffeners, and material

strength. Design variables included thickness of the skin laminate, stiffener thickness,

and stiffener height. The design study results showed that the grid-stiffened geometry

resulted in lighter designs compared to the conventional longitudinal stiffened panel

under the in-plane loading cases considered.

In a recent study, the effect of stiffness discontinuities and structural parameters on

the response of continuous-filament grid-stiffened flat panels was presented [15]. The

buckling load degradation due to manufacturing-introduced stiffener discontinuities asso-

ciated with a filament cut-and-add approach at the stiffener intersection was investigated.

For practical discontinuity sizes, the reduction in buckling load was found negUgible.

The benefit of utilizing non-solid stiffener cross sections, such as a foam-filled blade or

hat with a 0 ° dominant cap, was evaluated. Such stiffener cross sections were found

structurally very efficient for wing and fuselage applications.

In summary., the need for efficient and cost-effective structures has prompted the

development and study of new stiffening patterns which present stiffeners oriented at

an arbitrary angle with respect to the axis of the shell. In the case of isotropic cylin-

drical shells, two design studies that have considered axial compression and pressure

have resulted in conflicting conclusions concerning the efficiency of geodesically stiff-

ened shells. In the case of composite materials, no exhaustive design study has been

conducted either. The only results available have been obtained from parametric studies

on isogrid stiffened cylinders. In all cases, very dense grids of stiffeners were used. Al-

though experimental results indicate that geodesicaUy stiffened shells exhibit very good

damage tolerance characteristics and that they can be cost-efficiently manufactured, no

information is yet available concerning the performance of the geodesic stiffening con-

cept compared to more conventional stiffener arrangements in the case of composite

13



StYUCtUreS.

• ..- -

2.3 Scope of Design Study

To evaluate the efficiency of the geodesic stiffening concept in the case of composite

aircraft fuselages, a design study is proposed. Its overall objective is to seek practical,

minimum-weight designs for geodesically stiffened composite cylindrical shells, and

provide a database for a direct comparison of the optimal weights obtained with more

traditional stiffening patterns. Although the cost for the construction of the different shell

configurations may be different, no attempt will be made to include cost considerations

into the comparison study. The functional requirements of aircraft fuselages force the

inclusion of large ope_gs such as access ports and windows. For this reason, larger

skin portions between stiffeners, compared to those considered in the examples published

in the literature, will be considered. Consequently, it is believed that the discrete nature

of the stiffeners will have a stronger influence on the local and overall behaviors of

the shell. This is among the reasons why its analysis will be obtained via the finite

element method. All the design runs axe performed with the optimization system TBOP

(TestBed and OPtimization) which is a finite element based optimization system that

has been developed in the course of this research initiative and that will be described in

Chapter 3. Optimum designs axe sought for unstiffened shells as well as the geodesically

and conventionally stiffened shells subject to buckling and material failure constraints.

In the case of the stiffened shells, different numbers of cells in the axial and circumferen-

tial directions are considered. Prospective geodesic and conventional configurations are

shown in Figs. 2.2 and 2.3, respectively. In both cases, shaded portions indicate what

is considered to be a single cell. Although this definition is somewhat arbitrary, it was

chosen such that the number of stringers in the case of a conventionally stiffened shell,

and stiffeners in the case of a geodesically stiffened shell are equal between geometries

14



with the samenumberof cells. The developedsurfaceof eachcell is also equal. In

thecaseof theconventionallystiffenedshell,the definition of a cell is asshownin Fig.

2.4. It includes a portion of the skin with two stringers(one in the middle and one

half on eachside) and is terminatedby rings. Skin laminateswith +45 °, 90 °, and 0*

plies will be considered, where the lamination angle in the skin is measured with respect

to the axial direction. For the stiffeners, an orthotropic lamination sequence of [0]r is

considered where the lamination angle in the stiffeners is measured with respect to their

axis. Two levels of external loads, N=, are applied in uniaxial compression: 1000 and

2700 pounds-force per inch (lb/in). In torsion, two levels are also considered: N=v =

418.5 Ib/in and 1000 lb/in.

In the case of the unstiffened shell, three design variables are used. They are the

thickness of the 45 °, 90 °, and 0 ° plies, respectively. In the case of geodesically stiffened

shells, five design variables are used. The first three are identical to those used in

the case of the unstiffened shell, and the fourth and fifth design variables designate the

thickness and height of the geodesic stiffeners. In the case of the conventionally stiffened

shell, seven design variables are considered. The first three design variables are identical

to those used in the case of the unstiffened shell. The fourth and fifth design variables

designate respectively the thickness and height of the stringers, and the sixth and seventh,

the thickness and height of the inner rings, respectivelY.

Properties of a typical graphite-epoxy material system (Hercules AS4/3502) are used

in all analyses. Material properties for the stiffeners were assumed to be the same as

those for the skin laminae. Since the maximum strain theory is used to predict material

failure, the material strengths are expressed in terms of maximum allowable strain values.

The elastic, strength, and physical properties used in the design study are shown in Table

2.1.
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Fig. 2.2 - Design Study, Geodesically Stiffened Configurations.
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Fig. 2.2 - Design Study, Geodesically Stiffened Configurations (Continued).
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Table 2.1 - Graphite-Epoxy .Material Properties.

Elastic P:'_operties •

E: E: Gz._ G..3 vz:
Msi Ms i Msi Msi

1-_..5 !.64 0.87 0.54 0.3

E!

GPa
E2

GPa

12_ 11.3

Gi2

GPa
623

GPa
/212

6.0 3.7 0.3

Stren_.h Properties•

t C Z

{l_allo_able _l,allowable ,_- {2,allowable

0.009 0.008 0.0055

_2.allowable _fl2,allo,.uable

0.029 0.025

• :.•.

Physical Properties •

p = 0.057 !bin/in 3 (1600 kg/m 3)
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Chapter 3

The Optimization System.

Comparing the efficiency of the geodesic stiffening concept to unstiffened and con-

ventionally stiffened shells requires the study of different and complex configurations.

To guarantee uniformity, in the results, a versatile analysis and design tool that can deal

with each of these different configurations has to be used. This requirement prompted

the development of the new optimization system presented in this chapter.

Several alternatives can be considered for the development of an optimization system.

The use of special purpose programs that combine both the computation of the structural

response as well as the implementation of the optimization algorithm is one of the

alternatives. However, such programs have limited capabilities and are consequently not

suitable for the type of research considered herein. More often, a general purpose analysis

package, such as a finite element code, is used for the computation of the structural

response and an optimization package solves the design problem. This is the approach

followed in the present study. The optimization tool is based on the finite element code

CSM Testbed [16,17] and the optimization program ADS [18]. Before proceeding to

the description of this new optimization system, some terminology that will be used in

the present study is defined in Section 3.1. In Section 3.2, other optimization systems

that have been recently developed are briefly described. Then, in Section 3.3.1, some

generalities and the philosophy that has guided the development of the optimization

system are presented. This is followed, in Sections 3.3.2 and 3.3.3, by a description of

the new computational modules and procedures that have been developed to orchestrate

the sequence of calculations required to achieve an optimum. The description of the

optimization system ends with a discussion of the strategy that implements the imposition
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of buckling constraints.

problems are discussed.

3.1 Terminology

Finally, in Section 3.4, the results obtained for three example

The definition of the principal terms used in this chapter is given in this section.

The notion of optimal design requn'es the definition of a merit function, called the

objective function, that can be improved. An improvement in the objective func:ion can

be achieved by varying certain chamcterisffcs of the model, called design variables. Also,

the design must usuaily satisfy a set of equalities and/or inequalities which impose lower

or upper bounds on quantities such as displacements, strains, eigenvalues, etc .... These

relations are called constraints and they may be used, for example, to specify, bounds on

the value of the buckling load or the displacement of a point. The optimization problem

is:

,,_- . _ ..
• .-- .

i  i:ili:

T.

.... -_.,

• :.... , . . .

minimize f(x) (3.1)

such thaC gi(x) _< 0, j = 1,...,ng

h_(x) -" 0, k - 1.... , nh,

where y is the objective function, g_ are the inequality constraints, hk the equality con-

straints, and x the vector of design variables.

In the present study, an optimization system is defined as a computer program that

can realize the minimum-weight design of a structure based on a structural response

obtained from a finite element code. Such a system can be divided into three parts. A

general-purpose finite element code represents one of these parts. It is used to compute

the structural response corresponding to a specific design. A second part consists of

the sensitivity analysis module. It is responsible for the computation of the structural

response derivatives with respect to the design variables. This information is required

by the optimizer which constitutes the third part.
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It is clear that although this definition of an optimization system fits the approach

used in the present work, the second of the three basic components, namely the sen-

sitivity module, does not necessarily need to be present. If it is absent, the derivative

information can be computed using a finite difference fornaulation. This approach re-

quires the successive analysis of several designs, each of which is obtained by perturbing

the value of a single design variable.

The finite element code used in the present study is called the CSM Testbed program

[16,17]. It consists of a set of semi'independent computational modules, known as

processors, which communicate with each other only by exchanging data objects residing

in a data library. To utilize the processors in a particular analysis task, procedures

must be written in a high-level command language called CLA.MP [16] (Command

Language for Applied Mechanics Processors). The commands of a CLAMP procedure

can be interpreted and converted into object records by a "filter" utility called CLIP [16]

(Command Language Interpreter Pro_). The framework is depicted in Fig. 3.1.

3.2 Finite Element Based Optimization Systems

The versatility achieved by combining a finite element program and an optimization

code has attracted the interest of many researchers and three examples where this strategy

has been chosen can be found in recent literature. In Ref. [19], Walsh combined the

EAL [20] commercial package with the general-purpose optimization program CONMIN

[21]. CONMIN employs a usable-feasible directions search algorithm to minimize an

objective function that is subjected to a set of inequality constraints. Piecewise-linear

approximations of the objective function and the constraints along with move limits were

used in order to reduce the number of exact analyses required to achieve the optimum.

Except for the move limits, the only constraints supported by this optimization system

were stress constraints. The derivative computations were performed using the semi-
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Fig. 3.1 - Implementation of the CSM Testbed Software System.
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analytical approach described in Ref. [22]. The optimization system was applied to the

minimum-mass design of a large transport-type wing designed to satisfy stress constraints

while subjected to two static loading conditions. Results obtained using the system were

compared with results produced by a fully stressed design procedure.

Probably one of the most popular and widely used finite element analysis code is the

MSC/NASTRAN computer program. In 1983, a design sensitivity analysis module was

developed for this program and this new feature resulted in the development of several

optimization systems based on MSC/NASTRAN. The design sensitivity module was

recently enhanced to include desig'n variables and responses for composite materials.

This new facility was used in Ref. [23] to develop a NASTRAN-based optimization

system that can be used to design composite structures. The optimizer is called CONLIN

[24] and its interface with MSC/NASTRAN was also described in the paper. CONLIN

is a general-purpose optimizer that uses a convex linearization scheme to solve the

optimization problem.

For the desig'n sensitivity analysis of composites in MSC/NASTRAN, the design

constraints could be lamina stresses or failure indices, displacement, frequency, buckling

loads, or forces. Sensitivity of the design to changes in lamina thicknesses, orientation

angles, or material properties could be obtained. However, a single type of variables,

lamina thicknesses, could be defined as design variables. Semi-analytical expressions

were used for the calculation of the constraint derivatives with respect to the design

variables.

The optimization system described in Ref. [23] was tested on two example prob-

lems. The first problem dealt with the minimum-mass design of a rectangular laminated

composite plate with a circular hole subjected to a material failure constraint. The second

demonstration problem considered the minimum-mass design of a delta wing subjected

to a displacement constraint.
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Recently, the finite element program ABAQUS [25] and the optimization code ADS

[18] were combined to form the optimization system described in Ref. [26]. In this

case, no sensitivity module was developed. However, the finite difference calculations

corresponding to the approximation of the constraint derivatives with respect to the

design variables were performed on separate processors. The optimization system was

used to obtain a minimum-mass design for an aircraft canopy loaded by an internal

pressure. The optimization was performed using 50 thickness design variables and only

stress constraints based on the yon Mises criterion were imposed at each element.

3.3 A New Optimization System

3.3.1 Generalities

The new optimization system, called TBOE is based on the CSM Testbed [16,17]

and the general purpose optimization code ADS [18]. A user's manual is available for

the program (see Ref. [27]), and consequently, none of the details related to the use

of the optimization system will be presented here. The CSM Testbed is a framework

for computational structural mechanics research which integrates research in structural

mechanics, numerical analysis, and computer science. Several considerations have mo-

tivated the choice of the CSM Testbed. Among these considerations, the unrestricted

access to all parts of the source code, the modularity, as well as the availability of a

variety of state-of-the-art solution algorithms are major motivations. Another interesting

aspect of the CSM Testbed is that it offers algorithms that exploit the hardware capabil-

ities available with the new generation of computers. The availability of state-of-the-art

solution algorithms and their efficient implementation are very important features in the

context of optimization where the analysis must be repeatedly performed. The version of

the CSM Testbed used in the present study performs all the calculations using 16 digits.

The choice of the ADS optimization module has been motivated by the wide set
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of strategiesthat it offers to solve the optimizationproblem. This feature allows the

tailoring of the optimization strategy to the problem at hand. Moreover, the architecture

of ADS is such that it can be turned into a CSM Testbed processor by simply defining
r

separate subroutines without requiring modifications to its original code. This means that

it can easily be replaced once a new version of the program becomes available. This

characteristic also preserves the modularity of the optimization system that can easily be

separated into its three basic modules; namely, the finite element code, the sensitivity

analysis module, and the optimizer.

The organization of the optimization system follows the philosophy used in the

development of the CSM Testbed program (see Fig. 3.1). The CSM Testbed differs

from conventional finite element codes in that there is no single, monolithic program

(processor) controlling all aspects of the analysis. Instead, there is a growing set of

independently executable FORTR_'q processors, each of which is responsible for only

a small portion of the work, and on top of which are a growing selection of high-level

CLAMP procedures. To enforce modularity, processors do not communicate explic-

itly with each other, but instead communicate only by exchanging data objects in the

global database. The global database is made up of sets of data libraries which contain

collections of named datasets.

To keep up with this philosophy, a set of CLAMP procedures have been developed to

control the optimization run. Each of these procedures implements a small portion of the

work that must be performed to compute an optimum. Also, ADS has been embedde, d

into a processor. This means that it can now be called just as any other CSM Testbed

processor. As a result, both the optimization and the analysis programs are sitting at

the same level, and CLAMP procedures are in charge of calling each processor in the

appropriate order. The flow of calculations required for the computation of an optimum

is shown in Fig. 3.2. In theory, however, ADS is the "master" that sets the design
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variables to the_ new values and the analysis modules of the CSM Testbed constitute

the "slave" responsible for the computation of the information required by the optimizer

to proceed in the design space. This information may consist of the function values or
!,

of their derivatives with respect to the design variables as requested by the optimizer

through a variabte called tnfo.

In its current implementation, the optimization system supports three different types

of design variables. Two are related to the laminate construction. They are the thickness

of a ply and its orientation. The third type of design variable can designate the size of

finite elements and, consequently, allows a limited amount of shape optimization to be

performed In this study, it is used to modify the height of stiffening members. Linking

of the thickness or orientation design variables is possible.

The optimization system defines the weight of the structural component as the objec-

tive function that must be minimized subject to a set of constraints. Although this still

allows for the solution of a wide class of probIems, this type of objective function will

be difficult to use in conjunction with ply angle design variables because the gradient

of the objective function with respect to such design variables is zero. Consequently,

the only design variables considered in the present study are ply thicknesses and size of

finite elements.

Three types of constraints, buckling g_, displacement g,_ and material failure con-

striiints gl, can be imposed on the design. Buckling constraints are predicted using

a linearized buckling analysis which results in the solution of an eigenvalue problem.

Critical load vectors P_, which correspond to buckling in different modes, are obtained

by:

Pi = ljP,.I, (3.2)

-

where )_j is the jth eigenvalue and P,q is a reference load vector.
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Set-upan initial design:
•Definethefinite elementmodel
•Definesublaminates
*UseBDLM to build laminationsequences
•Specifythe nodeswheretheload is applied
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Fig. 3.2 - Flow of Calculations.
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constraintgbkis:

gbk =_'_--Aj <0, k= 1 .... ,rib, (3.3)

where vk is the limiting value of _'i, and nb is the number of buckling constraints. Since

._i and _ are close to 1.0, the buckling constraints do notneed to be normalized. The

procedure used in the present study to impose buckling constraints will be discussed in

Section 3.3.4. The displacement constraints gd require that the jth component of the

nodal displacement vector be less than a given maximum allowable value _,. The kth

displacement constraint is:

I

gdk "- :uj____ _ 1.0 < 0.0. k = 1 ..... nd. (3.4)

Finally, the material failure constraints, gl, are evaluated using the maximum strain

failure theory. The strains in each ply are first calculated from the mid-plane strains

and curvatures computed at a specific integration point. They are then transformed to

the principal material directions and compared to _eir respective allowable values. The

ratio closest to 1.0 is retained and Used to evaluate the constraint,

[ej._.__[_ 1.0 < 0.0, k - 1,..., rap, (3.5)
glk = -_k

where q is a component of the engineering strains and _ is its maximum allowable

value.

Since a gradient-based optimization algorithm is used, the derivatives of the con-

straints with respect to the ith design variable z_ are required. These are found by

differentiating Eqs. (3.3)-(3.5) and their calculation will be discussed in Section 3.3.3.

3.3.2 The Processors

The CSM Testbed consists of a library of independently executable FORTRAN

computational modules or processors. To build the optimization system, three new
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processors have been added to this library. The first of these processors, BDLM (Build

LaMinate), bui.lds the different lamination sequences to be used in the various sections of

a model. This processor reads user-defined sublaminate stacking sequences and stacking

orders and creates new datasets that contain the definition of complete stacking sequences

for groups of elements. This feature allows a design variable to designate the thickness

or orientation of a ply contained in several lamination sequences. This is important from

a manufacturing point of view since tailoring of a structure is normally achieved by

adding, at selected locations, plies with appropriate thicknesses and orientations on top

of an underlying base laminate.

The implementation of this feature has been realized by first breaking up the defini-

tion of the lamination sequences into two successive steps. In the first step, sublaminate

stacking sequences are defined in exactly the same way lamination sequences are de-

fined in the CSM Testbed. Then, the orderin which each sublaminate must be stacked

to produce the complete lamination sequence is given. For example, the definition of

the four stacking sequences L1 through IA of the plate shown in Fig. 3.3 is obtained

by defining three sublaminate sequences, S!-$3 and four stacking orders, one for each

section. The base sublaminate S 1 covers all four sections of the plate while vertical and

horizontal sections with different properties are obtained by adding $2 and $3, respec-

tively. These vertical and horizontal sections may represent the flange area of stiffeners

and fail safe su'aps, respectively, that are added to the skin laminate to improve the

structural performance.

Secondly, the ply orientation and ply thickness design variables refer to plies con-

mined in sublaminate stacking sequences. This implies that when the value of one of

these design variables is changed, only one sublaminate sequence must be updated but

all the lamination sequences that contain this sublaminatc must be rebuilt by BDLM.

Consider an example where the optimal thickness of one of the 90* plies adjacent to
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Fig. 3.3 - Lamination Sequences for a Flat Plate.
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the mid-plane of the plate shown in Fig. 3.3 is sought. In this case, the sublaminate

sequence S 1 must be updated but the four lamination sequences must be rebuilt since

S 1 enters the definition of each of them.
r

The second processor added to the library of CSM Testbed processors is called OPTI.

This processor is primarily used to set up the optimization problem and extract, from the

CSM Testbed database, the information necessary for the evaluation of the constraints

and their gradients. The functionalities of the processor can consequently be divided into

three groups. The first group contains the different facilities required for the definition

of the design variables, the constraints and the objective function. These facilities are

used once, at the beginning of each design run, to set up the optimization problem. The

second group contains programs that access the database and evaluate the constraints

and their gradients. Finally, a third group of functionalities realize miscellaneous oper-

ations required at different stages of the optimization run. For example, one subroutine

calculates the load applied to the model and the corresponding scale factor that must be

applied to the displacements when the loading is introduced using displacement boundary

conditions.

The third processor is called TB20. This processor contains the optimization program

ADS, and it also serves as an interface between the CSM Testbed and ADS. Most of

the interfacing work consists of reading information from the CSM Testbed datasets and

passing this information to ADS using different FORTRAN variables and arrays. The

information that needs to be sent to ADS includes the values of the design variables, the

constraints, the objective function, as well as miscellaneous optimization-related data.

Upon return from the optimizer, the design has been modified, and TB20 updates the

different datasets that need to be changed. Those datasets consist of the sublaminate

stacking sequences in the case of ply thickness or ply orientation design variables. In

the case of height design variables, the dataset that contains the node coordinates must
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be updated.

3.3.3 The Procedures

' As previously mentioned in Section 3.3.1, a set of CLAMP procedures implements

the sequence of operations required for the computation of an optima/design. To better

understand the role of each procedure, flowcharts that describe the performed operations

are included in Appendix A. The different procedures are briefly described in this section.

The procedure controlling the optimization run is called des__na_iter. It imple-

ments the loop shown in Fig. 3.2. At each cycle, either an exact analysis or the

computation of the derivatives Of the functions that define the optimization problem are

performed. The analysis and derivative calculations are controlled by the procedure

branch_on_info, and consequenly, des_an_..iter first calls this procedure, and then

the optimizer.

The role of branch_on_info is to organize the evaluation of the structural response

corresponding to the current design or a perturbation of the current design. In either case,

branch_on_info must call either the procedure analysis or derivative and the pro-

cessor OPTI. If the optimizer has requested the calculation of the values of the functions,

the two libraries containing the database are first examined to eliminate obsolete infor-

mation generated at the previous design point. Then, a procedure named analysis is

called. The role of this procedure is described below. Finally, the processor OPTI is

executed to evaluate the constraints and the objective function. On the other hand, if the

values of the derivatives have been requested, a procedure named derivative, which

is also described below, will first be called. This call is immediately followed by an

execution of the processor OPTI. In this case, OPTI is responsible for the constraint and

objective function derivatives with respect to the design variables.

The role of the procedure analysis is to compute the information required by
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OPTI to evaluatethe constraints.Dependingon the natureof the constraintsimposed

on the design,this informationmay consi._tof the displacementvector,the eigenvalues

correspondingto the bucklingproblem, and/orthe strains. In order to apply combined
r

loading conditions while controlling the individual magnitudes, analysis implements a

scaling feature that permits the loading to be introduced using applied displacements.

With the finite element method, the loading can be applied by specifying either nodal

displacements or nodal forces at the boundaries. If nodal forces are applied, no scaling

will be necessary, since the magnitude of the applied load corresponds to the magnitude

of the design load. However, the resulting displacements at the loaded edges are not nec-

essarily uniform and, therefore, deviate from the boundary conditions that are observed

during the actual loading of the structure. One way of solving this problem is to place

stiff elements adjacent to the loaded bound. Because of the increased computational

cost associated with a larger model and the ill-conditioned matrices that result from a

model with large differences in the stiffnessbf its elements, load introduction through

applied displacements is usually preferred. In this case, the boundary conditions can

be applied directly to the model of the smacture and the corresponding nodal loads are

computed from the finite element solution.

Although using nonzero boundary conditions eases the analysis of the structure, the

static displacements corresponding to a specific design must be scaled by analysis

since the load resulting from applying such boundary conditions may not correspond

to the design load. To handle combined loading conditions, aaetlysis can compute

up to three scaling factors, each factor corresponding to a different component of the

combined loading condition. For example, consider the case of a structure that must be

designed to resist a combined compression and shear loading. In such a situation, the

user must specify two series of nonzero displacement boundary conditions, one of which

corresponds to a case of pure compressive loading and the other to a case of pure shear.
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During the analysis of the structure, the procedure analysis will consider each case

independently by computing a static displacement solution and a scaling factor for each

of them. It will then apply each scaling factor to its corresponding static displacement

solution and superpose them to obtain the static displacement solution corresponding

to the combined loading condition. This resulting set of displacements wilI be used to

compute the strains and the eigenvalues of the buckling problem.

The procedure derivative performs the computations of the perturbed structural

response quantities such as displacements, strains, etc ..., which are required by the

processor OPTI to evaluate the constraint derivatives with respect to the design variables.

With ADS, the user has the option of either letting ADS determine the derivatives by finite

differences or supplying the derivative information to ADS. Because of the organization

of the optimization system, the latter method must now be chosen. Both an overall finite

difference scheme (OFD) and a semi-analytical (SA) method have been implemented in

the procedure deriva'eive for the approximation of the derivatives of the constraints

with respect to the design variables. Note that in the present study, the objective function

corresponds to the weight of the structure. Therefore, the computation of its derivatives

is based solely on geometric characteristics.

The semi-analytical method for the calculation of the constraint derivatives combines

an analytical expression for the displacement derivatives and a finite difference approx-

imation for the derivatives of the system matrices. This strategy is outlined below for

the cases of applied nodal forces and nonzero displacement boundary conditions.

In the case of applied nodal forces, the derivative of the displacement vector with

respect to a design variable du,_/dzi is obtained by solving the set of equations resulting

from taking the first derivative of the equilibrium equations with respect to z_:

dzi - _ -- "
(3.6)
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where K is the stiffness matrix, u_ the displacement vector, and f the load vector. The

terms dK/dz, and df/dz_ are approximated using finim difference formulas.

If nonzero displacement boundary, conditions are applied [28], the equilibrium equa-
)

lions can be viewed as:

where block K-,_ represents the non-singular matrix that is solved by a linear equation

solver while blocks KL: and K_.: contain coefficients that are eliminated due to con-

straint conditions. The vectors of unknown displacements and boundary conditions are

represented by u._ and u,, respective!y: Note that u.. may have zero and nonzero compo-

nents depending respectiveIy on whether the corresponding nodal displacement is fully

restrained, or nonzero displacement boundary, conditions are specified. Similarly, the

right-hand-side vector is divided into two parts: a null vector 0, and the static reaction

vector, I_

The load applied to the model, F,(x), corresponding to the boundary conditions u_

is:

I,
where A is a user-defined vector that gives the position in the static reaction vector of

the components that must be added to obtain the total applied load.

If the design load is Fd, then the displacement vector corresponding to the design

load, ud, is given by:

_. l.ld¢ l.lc )

where s(x) is a scale factor given by:

s(x) = FdF.(x). (3.10)

In this case, the derivative of ud_ with respect to a design variable z_ is given by:

du_ ds
= _.o (3.n)

dz_ dz_
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and, similarly, duau/dzi is obtained from:

due,, dtt_ ds
dz, - s-_z, + d-_z_u_" (3.12)

• To obtain ds/dzi, successively differentiate Eqs. (3.10) and (3.8):

ds -Fdij _ dR: ,dz,- F_ -_z, I (3.13)

where, dFt/dx, is obtained by differentiating the equilibrium equations corresponding to

u,, Eq. (3.7). That is,

...... ... :

dR dKT2 T du_ dK2n

dz, - dz, u_ + K_.,-_z ` + _u_. (3.14)dxi

Finally, the only missing term in the expression for dud,,/dzi, is du_/dzi and it can

be obtained by taking the first derivative of the equilibrium equations corresponding to

u,,, Eq. (3.7). That is,

duu

Kl,1--_-z_ = -_u¢ - dKl,1 u,, (3.15)dz, "

Note that one of the reasons for the SA method to result in computational savings,

c°mparedto the OFD approach, is that it does not require the factorization of system

matrices for computation of the derivatives. The solutions that need to be computed use

system matrices that have already been factored during the previous exact analysis. Con-

sequently, only forward elimination and backward substitution operations are required

and are one order of magnitude less expensive than the matrix factorization.

Once these computations have been performed and the derivative of the displace-

ment vector with respect to a design variable has been obtained, the calculation of the

derivatives of the constraints (Eqs. (3.3)--(3.5)) can be performed. In the case of a

buckling constraint, we obtain [29]:

d_i A dKa )u

dz_ dzi uTKcuj , (3.16)
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where Ka is the geometric stiffness matrix, and uj is the jth eigenvector. As for other

system matrices, the derivative of Kc is approximated using a forward finite-difference

formula. The perturbed geometric stiffness matrix entering the finite-difference formula

is obtained using the stresses corresponding to a first-order Taylor series approximation

; of the perturbed displacement vector:U d

i du_
u,_ = ud + -_-x _zi, (3.17)

where Az, represents a perturbation in the value of z,.

In the case of a displacement constraint, the derivative is directly obtained from

the solution of Eq. (3.6) or (3.12). Finally, in the case of material failure constraints,

Eq. (3.17) is first used to approximate the perturbed displacement vector. Then, the

strains corresponding to u_ are computed. Finally, a finite difference formula is used to

approximate the derivative of the constraint with respect to _:_.

3.3.4 Implementation of Buckling Constraints

Structures made up of thin-walled components must be designed for buckling re-

sistance. To put the problem of imposing buckling constraints in perspective, it is

worthwhile to present a simple example and briefly review the different alternatives that

can be considered for the imposition of such constraints.

The example used to illustrate the imposition of buckling constraints is shown in Fig.

3.4. It is a simply-supported open-web truss structure subjected to a uniform compressive

loading applied using nonzero displacement boundary conditions at its top edge (y = 28

in). Two design variables are considered; one represents the thickness t of the members,

and the other their height h (z-direction in Fig. 3.4), with initial values of 0.55 in and

0.60 in, respectively. The objective function represents the total weight of the truss.

The lowest eight eigenvalues obtained for this design are presented in Table 3.1. As

indicated in this table, based on the general shape of the eigenmodes, the eigenvalues
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can be classified into two different sets. The lowest three eigenvalues are associated

with in-plane buckling modes that are slightly different from one another. Similarly,

Re eigenvalues 4 through 8 are associated with slightly different out-of-plane buckling
7'

7: _ " :

modes. The first, second, fourth, and fifth buckling rn_es are shown in Fig. 3.5. Because

of the genera shape of the buck!ina modes,_it c_ intui_veiy be deduced_thai changing t

has a stronger influence on the lowest three eigenvalues than chanNng h, and vice versa.

For example' the variation of the critical loads associaied with the first in-plane and the

first out-of-plane modes with respect to the height of the members is shown in Fig. 3.6.

Based on the dependencies of the eigenvalues on the design variables, and assuming

that the optimization process is started from the initial design t = 0.55 in and h = 0.6

in, it can intuitively be deduced that, to reach the optimum, the optimizer will tend to

increase t and decrease h in such a way that the lowest eigenvalue remains at 1.0 and that

the weight will be reduced. Such a move, however, will result in a smaller difference

between the values of the fourth and third eigenvalues. As the design progresses, the

miign-itfide-0f the fourth eigenvaiue -W:i)lcontinuously decrease'until it switches place

with the lower ones. Eventually the two eigenvalues corresponding to the first out-of-

pI_eang _2plane modes _ appmac_:_e same value.

To guarantee that all the buckling modes are taken into account during the design

.i. " p_ess, eiosely-spacedeigenvalues _atCanpotentially switch places may require the

.: : imposition of as many buckling constraints as there are computed eigenvalues. However,

/** this practice is inconvenient Since to avoid coalescent eigenvalues which are undesirable

because they cannot be combined: m_a linear fashion [29]' increasing values must be

chosen for _i t: = I...., n6 in Eq. (3.3). As a result of _posing such a number of

bu¢_g constraints, the o_rnlzafidn°pi-b_biem ma_bec0me over-constrained and non-

optimal designs can be ob_ed. On the other h_d, imposing a single buckling constraint

baseffon the lowest eigenvaiue-i.riay result in convergence problems as the eigenvalues

,- . .... -
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Fig. 3.4 - Six-cell Cross-Stiffened Open-web Truss.
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Table 3.1 -- Lowest Eight Eigenva/ues for the Six-Cell Open-Web Truss.

Sequence Eigenvalue Set

1
2
3
4
5
6
7
8

1.0000
1.0326
1.1286
1.1890
1.1891
1.1892
1.1894
1.1896

In-plane
In-plane
In-plane

Out-of-plane
Out-of-plane
Out-of-plane
Out-of-plane

Out-of-plane

• . -,:.

?
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Fig. 3.5 - Four Buckling Modes for the Open-web Truss Structure.
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associated with two different modes become closely spaced and start switching places.

In the case of the open-web truss structure discussed above, for example, convergence

problems result in the generation of designs for which the lowest in-plane and out-of-

plane buckling modes become alternatively critical.

An alternate strategy is proposed in the present study. It is based on the observa-

tion that the eigenvalues can be _ouped based on the values of their derivatives with

respect to the design variables. Each group contains eigenvalues with derivatives of

similar magnitudes. A buckling constraint is then imposed only on the lowest eigen-

value found in each group. For example, in the case of the open-web truss, the first

three eigenvalues vary as a group, as the design is changed, without switching places

within the group. Conseqently, a single buckling constraint can be used to control these

eigenvalues. The implementation of this procedure can be visualized by forming a (p x n)

matrix of eigenvalue derivatives, where n is the number of design variables and p is the

number of eigenvalues contained in a specifie d range. The range of eigenvalues that

must be examined depends on the buckling response of the structure and has been set

to 1.2,xl. In order to select the eigenvalues that would be included in the constraint set,

the derivative of each eigenvalue with respect to a design variable is compared with the

derivative of the lowest eigenvalue with respect to the same design variable. If the differ-

ence is larger than a specified threshold, an additional constraint is set up for the higher

eigenvalue with a new value vk (see Eq. (3.3)). In the present study, a practical (but

arbitrary) threshold of 20% has been used. For example, the derivatives of the lowest

eight eigenvalues of the open-web truss problem with respect to the design variables are

shown in Table 3.2. Since the derivatives of the second eigenvalue (second row) are not

sigrdficandy different from the ones corresponding to the first eigenvalue, A2 would not

be included in the constraint set. However, the derivatives of the fourth eigenvalue, the

first out-of-plane buckling mode, are significantly different from the derivatives found
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in the first row. Thus, a buckling constraint would be set up to constrain the fourth

eigenvalue. Once the eigenvalues that must be constrained have been selected, the use

of slightly increasing values for u2, v3 .... in equation (3.3) precludes the apparition of
t

coalescent eigenvalues.

The number of groups of eigenvalues considered at a specific design point depends on

several characteristics of the problem at hand. First, the thresholds for the identification

of groups of eigenmodes (currently set to 20%) will affect the number of buckling

constraints that will be set up. Secondly, the choice of the design variables will also

influence the buckling response. For example, suppose that the thickness and height

of each pair of members forming the cells of the open-web truss structure discussed

above were allowed to vary independently. Then, as the optimizer starts changing the

dimensions of each member independently, the number of groups of eigenvalues that

need to be considered will progressively increase.

The procedure has been implemented in the optimization system and tested on several

open-web truss and cylindrical composite shell configurations. In all the cases considered,

only one buckling constraint, corresponding to the lowest eigenvalue, was imposed on

the initial design. Additional buckling constraints were automatically added as the lowest

eigenvalues of successive groups were approaching each other.

3.4 Examples

In this section, three examples are presented to demonstrate the capabilities of the

new optimization system. They also validate the implementation of the processors and

procedures that have been developed to build the optimization system. The examples

considered are geodesically stiffened panels. This stiffening concept has been defined in

Chapter 1 and will be studied in more detail starting in Chapter 4. This type of stiffening

has recently received more attention [2,12,13,30], principally due to its potential in
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Table 3.2 - Derivatives of the lowest Eight Eigenvalues
with Respect to the Design Variables.

Sequence/ _
-4.365

-4.502

-4.906

-1.760

-1.760

-1.761

-1,761

-1.761

-1.357

-1.401
- 1.531

-4.809

-4.809

-4.810

-4.810

-4.811

. _ ...
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terms of geometric tailoring, weight savings, increased damage tolerance and ease of

manufacturing.

In the first two examples, optimum designs with respect to weight are obtained

while satisfying constraints due to buckling as well as lower and upper bounds on

layer thicknesses and stiffener cross section dimensions. In the third example, material

failure constraints are also considered. The Sequential Convex Programming (SCP)

algorithm combined with the Modified Method of Feasible Directions and the Bounded

Polynomial Interpolation has been chosen to solve the optimization problem. In the

SCP, conservative approximations are used during the optimization of the convex sub-

problem. These approximations may cause the eigenvalues associated with the different

buckling modes of the structure to switch following a move in the design space. For

all the examples presented in the present study, move limits have been used. The move

limits were set between 10% and 20% for the initial design and multiplied by 0.8 every

time the most critical constraint obtained at a specific design point was more positive

than at the previous design point and larger than 0.001.

The finite element results have been obtained with the CSM Testbed using the

continuum-based nine-node quadrilateral shell element implemented in processor ES1

(element EX97). The computations were performed on a Convex C220 computer lo-

cated at NASA Langley Research Center.

3.4.1 Example 1

The first example focuses on the optimal design of composite wing rib open-web

trusses. Rib dimensions of 28 inches high by 80 inches wide arc used. The configuration

shown in Fig. 3.4 is a 6-ceU open-web truss and the boundary conditions used for the

analysis are indicated in the figure. Uniform unit displacements axe applied at the top

edge of the truss (y = 28 in) to simulate a uniformly distributed compressive load. Each
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memberis discretizedusing 6 9-nodeshell elements,and only one element is placed

alongtheheightof thememberssincethestructuralresponsepresentsno stronggTadients

in this direction.

A minimum-weightdesigncorrespondingto a compressiveload _v_of 1,000pounds

per inch (lb/in) is soughtsubjectto bucklingresistanceconstraints.The designvariables

representthe thicknesst and height h (z-direction in Fig. 3.4) of the stiffeners. Only

one laminateis considered,and alI its plies areorientedat 0* with respectto the axis

of each member. The number of cells in the x-direction (see Fig. 3.4) is varied in

an incremental fashion to determine the optimal configuration. The minimum weights

obtained are plotted in Fig. 3.7. This figure indicates that a minimum weight design

corresponds to six cells along the length of the panel.

This example clearly demonstrated the utility of the procedure described in Section

3.3.4 that automatically groups the eigenvalues and sets up an appropriate number of

buckling constraints. For all the configurations considered, two buckling constraints, cor-

responding to an in-plane and an out-of-plane buckling mode, are active at the optimum.

The buckling modes corresponding to the lowest in-plane and out-of-plane buckling

modes are shown in Figs. 3.5a and 3.5c. Their corresponding critical loads are 79745

and 82041 lb. Note that both buckling constraints axe critical since values of vl and v_

of 1.0 and 1.025, respectively have been used in Eq. (3.3). Verification of the Kuhn-

Tucker optimality conditions [29] has shown that the final designs obtained correspond

to optimal designs.

3.4.2 Example 2

This example presents the optimum design of a composite wing rib panel under a

combined compression shear load. The rib dimensions correspond to those used in the

previous example and are shown in Fig. 3.8 along with the boundary conditions. The
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Fig. 3.7 - Structural Efficiency of Open-web Trusses Subjected to
Uniform Compressive Loading.
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stiffeners are symmetrically placed with respect to the skin and an 8-cell configuration

is chosen. The skin lamination sequence is symmetric and present plies oriented at -45 °,

45 °, 90 °, and 0 °, the -45 ° plies being the outer plies and the 0 ° plies being adjacent to

the middle plane of the skin (see Fig. 3.8 for the definition "of the lamination angle in the

skin). The final thickness of the plies correspond to the value of the first design variable.

All the plies in the stiffeners are oriented along the length of the members. The panel is

subjected to equal magnitudes of shear N_ and unlaxial compression N_ of 1,000 tb/in.

The finite element model of the stiffened panel includes a total of 256 9-node el-

ements and 1073 six-degree-of-freedom nodes. The skin is modelled with 128 (32 by

4) elements and each stiffener is discretized with 4 elements. Two sets of nonzero dis-

placement boundary conditions are used to simulate, respectively, the compressive and

the shearing component of the loading. The complete structural response is obtained by

superposing the scaled structural responses obtained by applying successively each set

of nonzero displacement boundary, conditions.

The optimization problem consists Of minimizing the total weight f of the panel

subject to buckling constraints gb as well as lower and upper bounds on the design variable

values. Three design variables are used. The first design variable, x_, corresponds to

the thickness of the contiguous plies oriented at any specific angle in the skin of the

panel. For example, zl in of 90 ° plies are placed on each side of the panel middle plane.

Since a single design variable is used, all the plies oriented at a specific angle have the

same thickness, and the thickness of the skin is eight times the value of the first design

variable. The second and third design variables, ;e_ and xa, correspond, respectively, to

the thickness and height (z-direction in Fig. 3.8) of the stiffeners.

The history of the optimization run and the minimum weight reached after 10 design

iterations are shown in Fig. 3.9. It can be seen that after the first 5 iterations the weight

reduction rate was small, and that convergence occurred after a plateau had been reached.
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Note: Angle of laminanon in the skin is
measured with respect to the x-axis.

Boundary Conditions:

y=O: u--O,wO,O_-=O

y=O, z=O: w--O

y=28:Oy=0

Compression: u=0,v=- 1.0
Shear:. u=- 1.0,v=0

y=28, z=0:w=0

x=O:Ox--O

Compression:u--O,v=-y/H

Shear:.u=-y/H,v--O

x--O,z=O:w=O

x=80:Ox=0

Compression: u=0,v=-y/H
Shear:. u=-y/I-I,v=0
x=80,z=0:w=0

T
H = 28 inches

_L

Fig. 3.8 - Eight-Cell Geodesically Stiffened Panel, Finite Element Model
and Boundary Conditions.
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For this example, the convergence criterion specifies that convergence occurs when the

relative change in the value of the objective function is smaller than 0.2%. More detailed

results are presented in Table 3.3. In the first three columns, the values of each design

variable are presented. The value of the first buckling constraint and the objective

function (weight) are given in the fourth and fifth columns. The last column gives the

derivatives of the first buckling constraint with respect to each design variable. Note

that, because the constraints are posed as gj(x) _< 0 (see Eq. (3.1)), a negative _adient

component indicates that an increase in the value of the design variable would result in

a less critical constraint. The weight reduction achieved during the last design iterations

mainly comes from the reduction in the value of the stiffener thickness (design variable

z_). Note that, since the stiffeners are made of unidirectional material, their thickness

should probably be limited by design factors that have not been included in this example,

such as damage tolerance considerations. The CPU time required for a single analysis of

the structure can be broken up into two components. The first component corresponds to

the linear analysis of the structure and the calculation and assembling of the geometric

stiffness matrix. The second component represents the calculation of the eigenvalues of

the buckling problem. The CPU time corresponding to the ftrst component was 143 s,

and the CPU time for an iteration in the eigensotver was 15 s. The number of iterations

in the eigensolver varies during the optimization run, but generally decreases as the

optimization pro_esses. In this case, an average of 9 iterations were required at each

design point.

At the optimum, several buckling constraints, which correspond to different skin

buckling modes, are active. To make the stiffener buckling modes become critical,

the convergence criterion must be thightened so that few more design iterations are

performed thus yielding stiffener dimensions that will make buelding of these members

become critical. By thightening the convergence criterion, a final design for which both
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Fig. 3.9 - Eight-Cell Panel, History of the Optimization Run

54



. . ._ . _-.

Xl

inch

0.02
0.01753
0.01671
0.01656
0.01678
0.01679
0.01680
0.01683
0.01705

0.01707

Table 3.3 - History of the Optimization Run for the Eight-Cell
Geodesically Stiffened Panel.
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inch

0.15
0.1201
0.1018

0.08944
0.07693
0.07415
0.07284
0.06557
0.05704
0.05425

;r3

inch

0.6912
0.6606
0.6827
0.7484
0.7785
0.7883
0.7945
0.8581
0.8915
0.9103

gbl

5017082
-0.I618
-0.0209

-5.398E-3
-5.308E-3
1.212E-4
3.207E-4
-1.363E-4
-4.637E-3
-6.194E-4

f
lb

26.05
22.20
20.83
20.54
20.39
20.32
20.30
20.24

20.17
20.12

<- 108.21-7.820,-3.4.40>

<-87.65,-6.403,-2.408>
<- 86.64,-6.309,- 1.911 >

<- 147.6,-3.800,-0.5948>
<- 146.1,-4.156,-0.5526>
<- 145.4,-4.237,-0.5363>
<- 145.4,-4.280,-0.5258>
<- 148.0,-4.534,-0.4164>
<- 147.1 ,-4.985,-0.3793>
<- 146.4,-5.156,-0.3602>
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stiffener and skin buckling modes are critical has been obtained. This new design is

0.08% heavier than the one given in Table 3.3. The slight increase in weight is due

to the approximations used in the solution of the optimization problem which resulted

in the switching of the skin and stiffener buckling modes. For this new design, skin

buckling corresponds to the second buckling constraint and a limiting value _2 slightly

larger than the value of et (_2 = 1.0025_1) is used in equation (3.3).

The combined loading condition has been introduced using the scaling and super'po-

sition strategies implemented in the procedure analysis described in Section 3.3.3. In

this case, the use of displacement boundary conditions for the application of the loading

is forced by the fact that the fraction of the load carried by the stiffeners is unknown and

varies as the design is changed. Therefore, the values of the nodal forces that should be

applied to the stiffener and skin nodes are also unknown and cannot be used to introduce

the loading.

3.4.3 Example 3

The calculation of practical designs for composite structures typically requires the

consideration of a relatively large number of design variables. To demonstrate that such

structures can be designed with the optimization system, the design of a composite wing

rib panel that presents skin sections with different lamination sequences is performed.

The rib dimensions correspond to those used in the two previous examples and are shown

in Fig. 3.10a along with the boundary conditions. The stiffeners are symmetrically placed

with respect to the skin and a 3-cell configuration is considered. The stacking sequences

in the skin are as indicated in Fig. 3.10b. The underlying base laminate is reinforced in

the middle cell by additional plies symmetrically placed with respect to the middle plane

of the panel. The stiffeners are made of unidirectional material. The panel is subjected

to an axial stress resultant Nv of 5000 Ib/in.
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z,w Dinches

Notes: l-Angle of lamination in the skin is measured with respect
to the x-axis.

2-Empty circles indicate the location of the evaluation of
the material failure constraints.

Boundary Conditions:

y=O: u=O,v=O,Oy=O x=O: Ox=O

y=O,z--O:w=O u= 0
x=O, z=O:w=O

y=28: Oy=O x=80: Ox=O

u=O,v=-l.O u = 0

y=28, z=O: w--O x=80,z---O: w=O

a- Model and Boundary Conditions.
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b - Skin Stacking Sequences.

Fig. 3.10 - Three-Cell Geodesically Stiffened Panel.
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-=, The finite element model of the stiffened panel includes a total of 96 9-node elements

and 413 six-degree-of-freedom nodes. The skin is modelled using 48 (12 by 4) elements

and each stiffener is discretized with 4 elements. Nonzero displacement boundary con-

ditions are applied at the top (y = 28 in) to simulate the compressive loading.

The optimization problem consists of minimizing the total weight f of the panel

subject to buckling constraints gb, material failure constraints 9:1, g:_, and g:z imposed

in the skin and the stiffeners (see Fig. 3.10a). The final design must also satisfy lower

and upper bounds on the design variable values. The first six design variables, z_-zt, are

ply thickness design variables used to tailor the skin of the panel. Ply designations are

given in Fig. 3.10b next to the ply angles. For example, z_ designates the thickness of

the ±45 ° plies in the underly'ing base laminate. The seventh and eighth design variables

designate the thickness and height of the stiffeners.

The history of the optimization run is shown in Fig. 3.11. It can be seen that 62

exact analyses or design iterations were required to reach a minimum weight of 49.7 lb.

The final values of the design variables are given in Table 3.4. For comparison purposes,

a baseline design, obtained by considering only three design variables corresponding to

the skin thickness and the stiffener cross-section dimensions, had a final weight of 55.3

tb. This is a weight penalty of 11% compared to the 8 design variable problem. At

the optimum, two buckling and three side constraints are critical. The first buckling

constraint corresponds to a skin buckling mode and the second one corrresponds to the

buckling of the stiffeners. The material failure constraints are inactive. For the final

design, the Lagrange mfiltipiiers are < 98.79, 70.08, 3i_32_19.06, 0.29 > and the results of the

verification of the Kuhn-Tucker optimality conditions [29] are presented in Table 3.4.

In summary, these three examples have shown that the optimization system can be

used to optimally design structures that present a complex buckling response. They have

also demonstrated the utility of the scaling and superposition strategies implemented in
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Fig. 3.11 - Three-Cell Panel, History of the Optimization Run.
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Table 3.4 - Final Design for the Three-Cell Panel.

zl (in)

zz (in)
zs (in)

z4 (in)

z5 (in)

z6 (in)

zr (in)

z8 (in)
y (tb)

Values

O.O05t
O. 129

0.022

O.O05t

0.017

O.O05t
0.094
2.35
49.8

1.00
1.01
0.99

1.00
1.00

1.00
0.98
1.03

! Lower bound.

the procedure analysis for the application of combined loading conditions. Finally, the

last example has shown that the optimization system can also be used to obtain practical

solutions for problems that involve a relatively large number of design variables.

6O
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Chapter 4

Analysis of Composite Cylindrical Shells

As indicated in Chapter 3, the constraints imposed on the design of the cylindrical

shells considered in the present study areevaluated using the results of a finite element

analysis. Two limiting failure modes are considered. The first failure mode is the

buckling of the shell in either an overall or a localized mode, and the second is material

failure, where first-ply failure in the skin or stiffeners is considered. In this chapter, the

details of the structural analysis of the different cylindrical shell configurations considered

in the design study are presented. In Section 4.1, the specific element used is briefly

described. Then, in Section 4.2, the finite element models and the specific boundary

conditions used for the analysis of each configuration in the case of compressive and

torsional loadings are presented. Finally, in Section 4.3, characteristics of the behavior

of geodesically stiffened shells are discussed.

4.1 Finite Element Formulation

The only element type used in the present study is the quadrilateral 9-node shell

element called EX97 that has been installed in processor ES 1 of the CSM Testbed. Its

formulation is that of a continuum-based theory which leads to degenerated 3D shell el-

ements [31]. EX97 represents the assumed-natural strain (ANS) implementation of this

formulation [32]. The out-of-plane deflections and bending rotations are approximated

independently and this results in a 6TM continuity of the primary variables. This also

implies that the effects of transverse shear deformation are taken into account through

the use of a first-order shear deformation theory. The primary motivation behind the de-

velopment of these shell elements has been the construction of simple and efficient finite
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elementsfor plates andshells that arelocking-free and fit naturally into displacement-

basedprograms.Theyalsoyield accurateanswersfor coarsemeshes.

4.2 Finite Element Models

.°

-..

The finite element models used in the design study are presented in this section.

Although the optimization system described in Chapter 3 can be used in conjunction

with any finite element model, the optimization of a structure discretized with a refined

mesh may become computationalty very expensive. To reduce the computational cost,

partial models and symmetry boundary conditions are used. In all cases, the mesh is

rectangular in topology, and restricted to 9-node quadrilateral shell elements. Each finite

element model is defined as a m,_, x n,,, x l,_, mesh where rn,_, is the number of elements

in the axial direction, n,,, is the number of elements in the circumferential direction,

and t,,, is the number of elements along the height of the stiffeners. In the case of

unstiffened shells, only rn,_, and n,,, need to be specified. The boundary conditions

are imposed in a cylindrical coordinate system. The radial, circumferential, and axial

displacements are respectively denoted by u,, us, and u_. Similarly, rotations around the

radial, circumferential, and axial axes are denoted by er, e0, and e,.

Following the presentation of each model, the results of a mesh refinement study

are given to assess the capability of the mesh density chosen for the design study to

accurately predict the two lowest eigenvalues of the buckling problem. For the mesh

convergence study, a nominal design has been chosen. The skin is 0.08 in thick with a

quasi-isotropic lamination sequence of [-452/+452/902/02]s, where the lamination angle in

the skin is measured with respect to the axis of the cylinder. In the case of geodesically

stiffened sheUs, the geodesic stiffeners and the rings are 1.5 in high and are 0.1 and

0.2 in thick, respectively. The lamination sequences for the geodesic stiffeners and the

rings are [020It and [040]r, respectively, where the lamination angle in the stiffeners is
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measuredwith respectto their axis. For conventionally stiffenedshells,the rings are

identical to thoseusedfor the geodesicallystiffenedshellsand the stringersare 1.5 in

high and 0.1 in thick. For each case, the eigenvalues have been normalized with respect

to the lowest eigenvalue obtained with the most refined mesh.

4.2.1 Axial Compression

The finite element models used in the case of the unstiffened shell as well as the

geodesically and conventionally stiffened configurations subjected to axial compression

are presented in this section. For the unstiffened shell, four different meshes have

been used for the mesh refinement study. The model with 144 (12x12) quadrilateral

shell elements and 625 nodes is shown in Fig. 4.1. It represents a partial (L/2x90*)

shell-element-based model of the cylindrical shell. Symmetry conditions BC2 and BC3

are respectively imposed at mid.length and at 0 = 0* and 90*. The remaining edge is

clamped and the axial force is imposed by specifying the nonzero displacement boundary

conditions Uo at every node located on this edge. The first two eigenvalues obtained with

each mesh density are presented in Table 4.1. The lowest eigenvalue obtained with the

12x12 mesh is within 2% of the one obtained with the most refined mesh and, therefore,

the 12x12 mesh is used for the design study.

For the geodesically stiffened shell, different numbers of cells are considered in the

axial and circumferential directions (see Section 2.3 for a discussion of the scope of the

design study). For these structures, the model used depends on the number of cells in

the axial direction. In the cases of one, two, and three cells in the axial direction, the

partial model represents the entire length with one cell in the circumferential direction.

See Fig. 4.2a. Each cell is discretized with a mesh of 8x8 quadrilateral shell elements.

Eight shell elements are used for each stiffener. Symmetry boundary conditions BC3 are

imposed along the edges located at 0 = 0* and (360"/N), where N is the number of cells

63



L= 100in
R = 85 in

BCI:

BC'2:

BC3:

ur = O,u0 = O,ux = uo, 00 = 0

Ux= 0,0O= 0

uo = 0, 0x = 0

BC1

x

BC3

Fig. 4.1 - Model of the Unstiffened Shell Subjected to Compression.
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in the circumferential direction. On the two remaining edges, the displacements in the

circumferential direction and the rotations with respect to the same axis are restrained.

The axial force is introduced by specifying the nonzero displacement boundary conditions

Uo at all the nodes located on these edges. For four and eight ceils in the axial direction,

the partial model represents half the length with one cell in the circumferential direction.

See Fig. 4.2b. The mesh refinement is identical to the one used in the case of two

ceils in the axial direction. The same boundary conditions are also used except that the

boundary conditions BC4 are replaced by the symmetry boundary conditions BC2. The

mesh refinement study has been performed using the 2x16 configuration (see Fig. 2.2).

The results are as indicated in Table 4.2. In this case, the mesh chosen for the design

study (16x8x1) predicts the lowest eigenvalue of the buckling problem within 9.5% of

the one obtained with the most refined mesh.

For the conventionally stiffened shell, three different configurations, 2x8, 2x24, and

2x32 are studied under axial compression. Since they all have only 2 cells in the axial

direction, the same partial model is used in all cases. The partial model discretizes

the entire length with one cell in the circumferential direction, see Fig. 4.3. Since the

first buckling mode presents a short wavelength pattern in the axial direction and only 1

half-wave between each stringer, 24 elements are placed in the axial direction and only 8

in the circumferential direction. Therefore, the skin is discretized with 192 quadrilateral

shell elements. Each stringer is discretized with 24 elements and eight elements are

placed along each ring (24x8x1 mesh). There are 288 elements and 1211 nodes in the

finite element model. The boundary conditions applied to the model are identical to

those used for the two cell geodesically stiffened geometry (see Fig. 4.2a). The mesh

refinement study has been performed using the 2x8 configuration (see Fig. 2.3). The

results are as indicated in Table 4.3. In this case, the lowest eigenvalue predicted with

the mesh chosen for the design study (24x8xl) is within 1.0% of the one obtained with
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themost refinedmesh.

4.2.2 Torsion

The finite element models used in the case of the unstiffened as well as the geodesi-

cally and conventionally stiffened configurations subjected to torsion are presented in

this section. The model used for the unstiffened shell is shown in Fig. 4.4. it repre-

sents the entire shell (Lx360 °) and it has 6 elements along the length and 36 around

the circumference (6x36 mesh). It includes a total of 216 elements and 936 nodes. The

shell is clamped at each end and the loading is applied by imposing nonzero displace-

ment boundary conditions. The use of the entire model has been forced by the lack of

symmetries of the first buckling mode with respect to the midlen=-rda and the generator.

The results of the mesh refinement study are indicated in Table 4.4. As indicated by the

results obtained with the 6x24 and 12x24 meshes, refining the mesh in the axial direction

does not result in a significant improvement in the accuracy of the computed eigenvalues.

This is due to the low number of axial half-waves presented by the first buckling shape

which require only a small number of elements to be accurately modelled.

For the geodesically stiffened shell, different number of cells are considered in the

axial and circumferential directions. For these structures, all the partial models discretize

the entire length, and the number of cells modelled in the circumferential direction de-

pends on the specific configuration. For the 2x4, 2x8, 2x16, and 2x24 configurations,

short half-waves well contained within each cell are obtained. Therefore, only 3 ceils in

the circumferential direction need to be discretized. Although for the 3x24 and 4x24 con-

figurations the same buckling pattern is obtained, 4 cells in the circumferential direction

have been discretized to decrease the effect of the boundary conditions imposed at 0 =

0* and 15' on the buckling response. For the 2x32 configuration, the first buckling mode

presents long half-waves that extend over the entire length of the shell (see Fig. 5.4d).
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L= 100in
R = 85 in

BC3 :.

BC4 :

BC5 :

ue = O, 8x = 0
C5

u e = O, - x = -%, %e= 0

u e =0, ux= uo,%e =0

x _Y 11_-'_t LY"., L BC3

a - 2 Cells in the Axial Direction.

. -..

L= 100in
R = 85 in

BC2:Ux=0,88=0

BC3 : ue = 0, ex ffi0

BC5:ue=0, ux=u o.Se=0

R

X

BC3 BC5

BC3

b - 4 and 8 Cells in the Axial Direction.

Fig. 4.2 - Models of the Geodesically Stiffened Shell Subjected to Compression.
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L= 100in
R=85m

BC3: u0=0,8 x=0 _BC5

BC4: u8=0,u x=-u o,88=0

BC5: u8=0,u xfu o,8e=0 RBC4

/

Fig. 4.3 - Model of the Conventionally Stiffened Shell
Subjected to Compression.
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Table 4.1 - Results of the Mesh Refinement Study
for the Unstiffened Shell under Axial Compression

Mesh A1 A2

9x9 1.081 1.083
12x12 1.020 1.030
18x18 1.004 1.009
24x24 1.000 1.001

Table 4.2 - Results of the Mesh Refinement Study
for the Geodesically Stiffened Shell under Axial Compression.

Mesh

12x6x1
16x8x1

24x12x1

32x16xl

1.198
1.095
1.013
1.000

..... AI

'"i'.232

1.106
1.037
1.003

Table 4.3 - Results of the Mesh Refinement Study
for the Conventionally Stiffened Shell under Axial Compression.

Mesh ;,1

16x8x1
16x16x1
24x8x1
30x8x1

30x16x1

1.025
1.012
1.010
1.008
1.000
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L= 100in

R = 85 in

BC6:

BC7:

Ur = 0,uo = Uo, Ux =0, 0O = 0

u_ = 0,u o ='uo, Ux = 0, eo = 0

x ._Y
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Fig. 4.4 - Model of the Unstiffened Shell Subjected to Torsion.
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Thus, the effect of the symmetry boundary conditions tend to influence a larger portion

of the domain. To reduce their effect, 9 cells have been modelled in the circumferential

direction. However, the consideration of 9 cells in the circumferential direction does not

change the boundary conditions that must be applied along the generators. Consequently,

only the model that discretizes 3 cells in the circumferential direction is described. It is

shown in Fig. 4.5. The skin is discretized with 216 quadrilateral shell e!ements. Twelve

elements are placed along the length and eighteen in the circumferential direction. Six

shell elements are used for each stiffener (12x18xl mesh). There are 324 elements and

1333 nodes in the finite element model. Boundary conditions BC10 are imposed along

the edges located at 0 = 0 ° and (360°/(N/3)) (360°/(N/9) for the 2x32 configuration).

Imposing ur = 0 along these two edges allows to exclude a local buckling mode that

develops along these edges when u, is free. On the two remaining edges, the displace-

ments in the axial direction and the rotations with respect to the circumferential direction

are restrained. The shear force is applied by specifying nonzero displacement boundary

conditions at all the nodes located on these edges. The mesh refinement study has been

performed using a 2x24 configuration (see Fig. 2.2). The results are as indicated in

Table 4.5a. In this case, the mesh chosen for all of the configurations, excluding the

2x32, (12x6xl) predicts the lowest eigenvalue of the buckling problem within 5% of the

one obtained with the most refined mesh. For the 2x32 configuration, the computational

requirements associated with the consideration of nine cells in the circumferential direc-

tion has forced the use of a coarser mesh. However, as previously mentioned, the first

buckling mode presents a single half-wave within each cell. Consequently a mesh of

4x4/cell can be used as indicated by the results of the mesh refinement study presented

in Table 4.5b.

For the conventionally stiffened shell, three different configurations, 2x8, 4x8, and

2x32 have been studied in torsion. For the 2x8 configuration, the low number of waves
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L= 100in
R = 85 in

BC8 :

BC9 :

BCi0:

u8=u o,ux=O, 80=0

u8 = -uo,ux= O,OO = 0

Ur= O,uxfO. Ox=O
z BCIO

V

L

Fig. 4.5 - Model of the Geodesically Stiffened Shell Subjected to Torsion.
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Table 4.4 - Results of the Mesh Refinement Study
for the Unstiffened Shell under Torsion.

Mesh A_ A2

6x24 1.05 1.13

6x36 1.02 1.11
12x24 1.05 1.13
6x48 1.00 1.09

Table 4.5 - Results of the Mesh Refinement Study
for the Geodesically Stiffened Shell under Torsion.

a - All the Configurations, except the 2x32.

Mesh A_ A2

12x18x1 1.05 1.06
16x24xl 1.00 1.00
20x30x1 1.00 1.00

b - 2x32 Configuration.

Mesh _t

12x36x1 .... 1.006

12x54x 1 1.000

Table 4.6 - Results of the Mesh Refinement Study
for the Conventionally Stiffened Shell under Torsion.

Mesh ), _ ,_2

6x24x 1 1.038 1.118
6x36x i 1.035 1.118

12x24xl 1.003 1.063
18x24x1 1.000 1.063
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presented by the first buckling mode has allowed the discretization of the complete

shell. The resulting model is shown in Fig. 4.6a along with the boundary conditions.

The skin is discretized with 288 quadrilateral shell elements. Six elements are placed

along the length and 48 around the circumference. Each stringer is discretized with 6

elements (6x48xl mesh). There are 480 elements and 2144 nodes in the finite element

model. The displacement in the axial direction, u_, and the rotation with respect to the

circumferential direction, 0e, are restrained at both ends. The loading is applied with

nonzero displacement boundary, conditions at each end. To study the 4x8 configuration,

the same mesh density has been used. Since only half of the circumference of the shell

is discretized, symmetry boundary, conditions BC10 are applied along the generators

located at 0 = 0 ° and 180 °. For the 2x32 configuration, the entire length of the

shell and three cells in the circumferential direction are discretized using a 6x24x1

mesh. Consequently, six elements are placed along the length of the sheU and 24 in the

circumferential direction. Six shell elements are used for each stringer. The boundary

conditions used for the 4x8 configuration are also applied for this configuration (see Fig.

4.6b). The mesh refinement study has been conducted using the 2x32 configuration (see

Fig. 2.3). The results are as indicated in Table 4.6. Comparing the results obtained

with the 6x24xl and 6x36x1 meshes allow to conclude that no practical difference is

obtained when the number of elements in the circumferential direction is increased. The

mesh chosen for the design study (6x24xl) allows to predict the lowest eigenvalue of

the buckling problem within 4% of the one obtained with the most refined mesh.

4.2.2 Combined Axial Compression and Torsion

The finite element models used in the case of combined axial compression and torsion

are presented in this section. As for the other load cases, an unstiffened shell as well as

conventionally and geodesically stiffened configurations are studied. For the unstiffened
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L= 100in

R = 85 in

BC8 :

BC9 :

BC8

u0 = uo, Ux = 0, 00=0

u0=-u o,u x=0,00 = 0

BC9

x
a - 2x8 Configuration.

L= 100in

R = 85 in

BC8 :

BC9 :

BC10:

uo = Uo, Ux =0, Oe=0

ue =-u o,u x=0,00 = 0

ur=O' ux =O' Ox =O BC8

b - 4x8 Configuration.

Fig. 4.6- Models of the Conventionally Stiffened Shell Subjected to Torsion.
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shell, the model is presentedin Fig. 4.7. It representsthe entire shell (Lx360°) and it

has10shell elementsalong the lengthand40 aroundthecircumference(10x40mesh).

It includesa total of 400 elementsand 1680nodes. The level of meshrefinementhas

beenchosenbasedon the fact that, undercombinedcompressionand torsion of equal

magnitudes,the first buckling moderesemblesthe oneobtainedunder torsion only. It

is recalledthat underpure torsion,a 6x36meshallows to predict the lowest eigenvalue

within 2%of theoneobtainedwith a 6x48mesh.Consequently,the 10x40meshshould

at leastallow the samelevel of accuracyto be obtained. For the caseof N_ = 2700

lb/in and N_._ = 418.5 Ib/in, the model may be slightly less accurate. However, due

computational considerations the same mesh refinement has been used.

The boundaw conditions are such that the rotation around the circumferential direc-

tion, 00, is restrained at both ends and the loading is introduced by imposing nonzero

displacement boundary conditions. Because the same components of the static displace-

ment vector are constrained for the compressive and torsional loadings, the two sets of

boundary conditions can actually be considered as two different vectors of applied mo-

tions. Therefore, only successive forward eliminations and backward substitutions are

required for the calculation of their respective static displacement solutions. Once these

solutions have been calculated, they are scaled and superposed to obtain the resulting

displacement field (see Section 3.3.3 for a discussion of the superposition and scaling

procedures).

For the geodesically stiffened shells, only two configurations, 2x8 and 2x24, are

studied under combined loads. For these studies, the model and mesh density are iden-

tical to the torsion case. The resulting model is shown in Fig. 4.8 along with the

boundary conditions. As in the case of the unstiffened shell, the displacement solution

corresponding to the combined loads is obtained by superposing the solutions obtained

from each set of displacement boundary conditions.
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L= I00 in
R -- 85 in

BClI:

BC12:

Compression: ur = 0, u0 = 0, ux = %, 00 -- 0

Torsion: ur = 0, u0 = %, u x = 0, 00 = 0

Compression: ur = 0, u0 = 0, ux = -uo, 0o -- 0

Torsion:

Fig. 4.7 - Model of the Unstiffened Shell Subjected to
Axial Compression and Torsion.
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BCll:

BC12:

BC13:

compression: u0 = 0, ux = uo, 00 = 0

Torsion: u0 = uo, ux = 0, 00 = 0 R BC13

Compression: u0 = 0, u x = -uo, 00 = 0

Torsion: u0 = -uo, ux = 0, 00 = 0

Compression: u0 = 0, ux = (-2z/L + 1)%, 0x = 0

Torsion: u0 = (-2z/L + 1)uo, ux = 0, 0 x = 0

I

L

k

Fig. 4.8- Model of the Geodesically Stiffened Shell Subjected to
Axial Compression and Torsion.
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For the conventionally stiffened shell, only two configurations, 2x8 and 2x24, are

studied under combined loads. For the the load case N_ =1000 and N#_ =1000 lb/in,

the model used in the case of torsion has been adopted, see Fig. 4.9a. The entire

r

shell is discretized and six elements are placed along _e length and 48 around the

circumference. Six elements are placed along each stringer. For the load case N= =2700

and N#_ =418.5 Ib/in, a finer mesh is u_d in the axial direction to more accurately

capture the first buckLing mode since a short wavelength pattern is expected. For this

second load case, the entire length of the cylinder and three cells in the circumferential

direction are discretized, see Fig. 4.9b. Twenty-four elements axe placed along the

length of the cylinder and eighteen in the circumferential direction. As in the other cases

of combined loads, the complete displacement solution is obtained by superposing the

solutions obtained from each set of displacement boundary conditions.

4.3 Behavior of Geodesically Stiffened Shells

As evidenced by the literature review presented in Chapter 2, very little information

is available on the analysis and the design of composite geodesically stiffened cylindrical

shells. Moreover, most of the papers that have been published use a smeared stiffener

approach which represents the skin-stiffener assembly by an equivalent homogeneous

orthotropic plate. Since in the present study a small number of stiffeners is considered,

it is expected that the discrete stiffener assembly will influence the local and overall

behaviors of the shell. Consequently, such an approach is not used. The purpose of

this section is to develop a better understanding of the behavior of geodesically stiffened

shells and demonstrate that they can be tailored to suit the particular requirements of a

specific loading regime.

Results of preliminary studies indicate that under compressive loading, the structural

behavior of the geodesically stiffened shell fails in either one of the following two
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L= I00in
R = 85 in

BC11:

BC12:

Compression: u0 -- 0, ux -- %, 00 = 0

Torsion: u0 = %, ux = 0, 00 = 0

Compression: u0 = 0, ux -- -%, 00 = 0

Torsion: u0 = -%, ux = 0, 00 = 0 C12

X

a - 2x8, Nx = Nry = 1000 lb/in.

L= 100in
R=85 in

BC11: Compression: u0 -- 0, ux,=--"uo, 00 = 0

Torsion: u 0 -- %, Ux-- 0, 00 = 0

BC12: Compression: u0 -- 0, ux -%, 00 --0 BC11

Torsion: u0 = -%, _ = 0, 00 = 0

BC13: Compression: u0 = 0, u x ffi(-2z/L + 1)uo, 0x = 0 BC12

Torsion: u0 = (-2z/L + 1)%, ux = 0,

J BC13

b - 2x8 and 2x24, Nx = 2700 lb/in N_ = 418.5 lb/in.

Fig. 4.9 - Models of the Conventionally Stiffened Shells Subjected to
Axial Compression and Torsion.
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categories. In the first category, the value of the angle "r between the stiffeners and

the axis of the cylinder (see Fig. 2.1) is large and the stiffeners behave essentially like

rings. In this case, the Poisson's expansion of the shell creates tensile stresses in the

stiffeners. In the second category, the angle r is small, and the structural behavior of

the stiffened shell resembles more closely the behavior of a shell stiffened by stringers.

In this latter category, part of the axial load is carried by the stiffeners. Therefore,

compressive stresses developed in these members. Each category of structural behavior

is now illustrated by considering a specific example.

The example considers the 4x8 geodesically stiffened configuration (see Fig. 4.10)

subjected to axial compression only. The same nominal design used in the previous

section for the mesh convergence studies is considered. The skin is 0.08 in thick with a

quasi-isotropic lamination sequence of [-45J+45_./90JO2]s. The geodesic stiffeners and

the rings are made of 0 ° layers and are 1.5 in high and 0.1 in and 0.2 in thick, respectively.

The boundary conditions correspond to those describe in Section 4.2.1 (see Fig. 4.2b).

To obtain different angles "r, the overall length of the shell is progressively increased.

The u, component of the static displacement solutions is shown in Fig. 4.11 for three

different lengths. In each case, the magnitude of the displacements has been normalized

by the value of u,. (R,45*,L/2) of a shell with the same dimensions but stiffened with end

rings only.

In Fig. 4.11a, a length of 100 in is considered and the resulting behavior of the shell

falls in the first category described above. The stiffeners are in tension, and u, tends to be

larger in the unstiffened regions of the skin than in the vicinity of the stiffeners. As the

overall length of the shell is progressively increased, a range of angles is found for which

the tension due to the Poisson's expansion of the sheU is balanced by the compression

created by the applied compressive load. As a result, the stiffeners are subjected to a

very low level of stress and the radial deflection of the skin is almost uniform over the
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Fig. 4.10 - 4x8 Geodesic Configuration.
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a - L = 100 in, 7 = 53.2 °.
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b - L = 175 in, "r = 37-3 °.
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c- L = 300 in, 7 = 24.{P.
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Fig. 4.11 - u, Component of the Static Displacement Solution
Corresponding to 3 Different Lengths.
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entire shell. This type of behavior is illustrated in Fig. 4.11b. In this case, the stiffeners

are only slightly compressed. As "r becomes smaller, the compressive stresses in the

stiffeners increase and the static displacement pattern is changed substantially compared

to the ones obtained for a larger value of 7 or for an unstiffened shell. For example, the

radial displacements in the vicinity of the stiffener intersections are now more than twice

as large as those that would be obtained for an unstiffened shell. On the other hand, in

the unstiffened regions, radial displacements smaller than those that would occur in the

case of an unstiffened shell are obtained. Past experiences have shown that depending

on the stiffness of the stiffeners, negative radial displacements could even occur in the

unstiffened regions. These aspects of the behavior of geodesically stiffened shells will

also be discussed in Section 5.3, tiffed Skin Laminate Trends. It will be seen that the

ratio of the stiffener to skin stiffnesses also has a strong influence on the magnitude of

the radial component of the static displacement solution.

This study clearly demonstrates that depending on the angle 7, the geodesic stiffening

pattern can be tailored to resemble either the behavior of a ring or a stringer stiffened

shell. In the latter case, however, the curvature of the geodesic stiffeners result in the

creation of bending stresses that produce important radial displacement components.

This is a disadvantage when aerodynamics considerations require the outer surface of

the shell to be as uniform as possible as in the case of aircraft fuselages. Also, such

high displacement gradients are likely to produce critical stress states at the skin-stiffener

interface where stiffened composite structures are known to be weak. Although under

compression the tendency of the stiffeners is to push the skin outward, under tension

this tendency would be reversed and the stiffeners would tend to peel-off from the skin.

Finally, when a geodesically stiffened shell is subjected to torsion, half of the stiff-

eners are in tension and the other half are in compression. Therefore, both categories of

behavior are found over different regions of the stiffened shell. As a result, the stiffeners
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that are in compression tend to push the skin outward, and those that are in tension tend

to pull the skin inward. For example, the u, component of the static displacement solu-

tion obtained for a 2x16 geodesic configuration is shown in Fig. 4.12. The magnitude

of the radial displacements correspond to unit tangential displacements applied at each

end.

. : ; .. <
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Fig. 4.12 - u, Component of the Static Displacement Solution
under Torsion.
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Chapter 5

Design Study Results

In Chapter 3, a new optimization system, called TBOP, has been described and

tested on three simple examples. TBOP is based on the finite element package CSM

Testbed and the numerical optimization program ADS. In the present chapter, following

the outline presented in Section 2.3, it is used to conduct a preliminary design study

for minimum-weight aircraft fuselages. In Section 5.1, optimum designs of geodesically

stiffened shells subjected to axial compression, torsion, and combined compression and

torsion axe obtained. In the following section, the results are analyzed and discussed.

Trends in design variables and other parameters are examined to determine what con-

tributes to a structurally efficient stiffened shell design. In Section 5.3, trends in the

design of the skin laminate of geodesically stiffened shells are discussed. Because of

the computational requirements associated with the optimization of the configurations

considered in the present study, partial models have been used. The results obtained

with these partial models are validated in Section 5.4 where the optimal configurations

are analyzed using a larger portion of the structure. Finally, Section 5.5 gives estimates

of the computational times required for the calculation of optimal designs for the classes

of structures considered in the present study.

5.1 Optimum Designs for Stiffened Shells

In this section, minimum-weight stiffened shell designs subject to constraints on

both buckling resistance and material Strength are sought. Material strength constraints

considered in the analysis are maximum strain failure criterion of the skin and stiffeners.

The imposition of material failure Constraints is facilitated by the repetitive nature of
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the static displacement field from cell to cell. In the case of compressive loading, a

material failure constraint is imposed in the skin and a second one in a stiffener. In

the case of torsional loading, three material failure constraints are considered. As in

the case of compressive loading, a constraint is imposed in the skin. The second and

third constraints are imposed in stiffeners subjected to tensile and compressive stresses,

respectively. Although a finite element analysis would allow the calculation of material

failure constraints close to stress concentrators, the meshes chosen for the design study

are not sufficiently refined to allow their accurate evaluation. Consequently, the locations

for the evaluation of these constraints (see Fig. 5.1) are such that they are far from the

stiffener intersections and edges of the shell where stress concentrations may occur.

To briefly review the scope of the design study, covered in Section 2.3, three cylinder

configurations are considered: unstiffened shell, geodesically stiffened cylinder, and

conventionally stiffened cylinder. The specific configurations and loading cases are

indicated in Table 5.1. For the geodesically stiffened configurations, the number of

cells is varied in both the circumferential and axial directions and the minimum-weight

design corresponding to each configuration loaded in axial compression and pure torsion

is obtained. In combined compression and torsion, only the 2x8 and 2x24 configurations

have been studied. For the conventionally stiffened cylinders, a 2x8 configuration has

been studied in compression, torsion, and combined compression and torsion. To evaluate

the effect of increasing the number of stringers, 2x24 and 2x32 configurations have been

studied in compression. The 2x32 configuration has also been studied in pure torsion,

and the effect of increasing the number of rings in torsion has been studied with a 4x8

configuration. In compression, the results obtained have shown that the rings play only a

minor role. Therefore, the effect of increasing the number of rings has not been studied

for this loading case.

Skin laminates with +45, 90, and 0* plies are considered. Unidirectional material
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Fig. 5.1 - Locations for the Evaluation of the Material Failure Constraints.
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is used in the stiffeners. A minimum-gauge lower bound of 0.005 in is imposed on

the thickness of individual plies in the skin. To avoid elements with undesirable aspect

ratios, a lower bound of 0.4 in has been imposed on the height of the stiffeners. A

e

minimum-gauge of 0.040 in has been arbitrarily impose_t on their thickness. For the

unstiffened shell, three design variables are considered. They are the thicknesses of

the +45 °, 90 °, and 00 plies. For the geodesically stiffened shell, five design variables

are used. The first three design variables are identical to those used in the case of the

unstiffened shell, and the fourth and fifth design variables designate the thickness and

height of the geodesic stiffeners, respectively. For the conventionally stiffened shell,

seven design variables are used. As in the case of the geodesically stiffened shell, the

first three design variables designate the thickness of the + 45 °, 90 °, and 0 ° plies in

the skin. The fourth and fifth design variables designate the thickness and height of the

stringers, respectively. The last two design variables designate the thickness and height

of the rings that are located away from the ends of the shell. For all the configurations,

the final skin layup is: [-45-_/45_,/90_2/_,]s, where an overbar is placed to indicate that

the value of the design variable has been normalized by the thickness of an individual

ply. Note that for both the geodesicaUy and conventionally stiffened shells, the end-rings

are not considered in the design study. Therefore, their dimensions are constant (0.2 in

thick and 1.5 in high) and their weight is not included in the results. The loads applied to

the models include the axial compression (N,), and shear (N_) which results in torsion.

The magnitudes of the loads are 1000 and 2700 lb/in in compression and 418.5 and 1000

lb/in in torsion.

The optimization program ADS allows several choices for each of the three parts

(strategy, optimizer, and one-dimensional search) of the solution procedure for the con-

strained optimization problem. Numerous other parameters also govern the optimization

process itself, through specifying internal tolerances, bounds, convergence criteria, etc,
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Table 5.1 - Cases Considered in the Design Study.

__ ..'.

Configuration Type Compression Torsion Combined

Unstiffened x x x

lx12 Geodesic x

2x4 Geodesic x x

2x8 Geodesic x x x

2x8 Conventional x x x

2x16 Geodesic x x

2x24 Geodesic x x x

2x24 Conventional x x

2x32 Geodesic x x

2x32 Conventional x x

2x48 Geodesic x

3x24 Geodesic x

3x36 Geodesic x

4x8 Conventional x

4x24_' Geodesic .......... x

4x48 Geodesic x

8x48 Geodesic x
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for the algorithm. Based on results obtained in Ref. [30], the Sequential Convex Pro-

gramming strategy, Modified Method of Feasible Directions optimizer, and Bounded

Polynomial Interpolation one-dimensional search technique were chosen. For the con-

r

vergence criterion, a relative change of less than 0.1% in" the value of the objective

function between two consecutive design iterations is used.

The results obtained in Chapter 4 allowed to determine the level of mesh refinement

required for the prediction of the static and buckling responses for each configuration

considered herein for compression, torsion and combined compression and torsion. The

levels of mesh refinement and the models selected for the design study are summarized

in Table 5.2. The loading is introduced using nonzero displacement boundary, conditions.

Therefore, the scaling procedure implemented in the procedure analysis (see Section

3.3.3) is used to scale the displacements to the level of the design load. Only one

buckling constraint corresponding to the lowest eigenvalue is imposed on the initial

design. In many cases, additional buckling constraints are automatically added by the

finite element based optimizaton system to guarantee convergence of the optimization

process (see Section 3.3.4 for a discussion of the strategy used to impose the buckling

constraints).

The results of the design runs Will now be presented for the different loading cases,

in the form of structural efficiency curves for the various geometries. In the present

study, "stmcngal efficiency" is defined as minimum cylinder weight for a given load

carrying capacity. The comparisons between geodesic and conventional configurations

will not include the differences between the cost involved in the construction of each

configuration. Detailed results which include the values of each design variable, the

constraints, and the objective function are presented in Appendix B.
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Table 5.2 - Mesh Refinement Requirements and
Models Used in the Design Study.

a - Unstiffened Shell.

• Loading

Axial Compression

Torsion

Combined Compression
and Torsion

Model

L/2 x 90*

L x 360*

L x 360*

Mesh

rrlne X fine

12 x 12

6x36

10 x 40

b - Geodesically Stiffened Shell.

- : .: :. :

Loading

Axial Compression

Torsion

Combined Compression
and Torsion

Configuration

1 cell in the
axial direction

2 cells in the
axial direction

3 cells in the
axial direction

Model

8 cells in the
axial direction

L x 3600/N _

L x 360'/N *+

L x 360°/N _

Mesh

mne X _ne X lne

8x 8xl

16x 8xl

24x 8xl

4 cells in the L/2 x 360'/N 16 x 8 x 1
axial direction

L/2 x 3600/N 32 x 8 x 1

L x 3(3600/N)

L x 9(360"/N)

L x 4(3600/N)

L x 3(360"/N)

2 ceils in the
axial direction

4, 8, 16, 24 cells in the
circ. direction

2 cells in the
axial direction
32 cells in the
circ. direction

3 and 4 ceils in the
axial direction
24 cells in the
circ. direction

in the

2 cells in the
axial direction

8 and 24 cells
circ. direction

12 x 18 x 1

8x36xl

12 x 24 x 1

12x 18x 1

SN: Number of cells in the circumferential direction
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Loadi 

- Axial Compression

Torsion

Combined Compression
and Torsion

c - Conventionally Stiffened Slaeii,

Configuration Model

2 ceils in the
axial direction

2 ceils in the
axial direction
8 ceils in the
circ. direction

2 ceils in the
axial direction
32 ceils in the
circ. direction

4 cells in the
axial direction
8 cells in the
cu'c. direction

2 cells in the

axial direction
8 cells in the
circ. direction

1000-1000 lb/in

2 cells in the
axial direction
8 and 24 cells in the
circ. direction

2700-418.5 Ib/in

L x 360"/N

Complete

L x 3(360°/N)

L x 4(360"/N)

Complete

L x 3(360"/N)

Mesh

trine X rLne X Ine

24x 8x 1

6x48x1

6x24xl

12 x 48 x 1

6x48xl

24x 18 x 1
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5.1.1 Axial Compression Only

Cylinder structural efficiency versus the number of cells, for two levels of axial

compression, ._b = 1000 and 2700 lb/in, is shown in Fig. 5.2. The results presented

for the conventionally and geodesically stiffened shells in Fig. 5.2a correspond to an

increasing number of cells in the circumferential direction for 2 cells in the axial direction.

In this figure, filled circles and squares represent the individual designs obtained for the

geodesically stiffened configurations, the empty circle and square indicate the results

obtained for the unstiffened cylinder, and finally, x's and stars axe used to indicate the

designs obtained for the conventionally stiffened sheUs. In Fig. 5.2b, results obtained by

considering an increasing number of cells in the axial direction for geodesically stiffened

shells with 48 cells in the circumferential direction and subjected to 2700 lb/in Of axial

compression are presented. For the conventionally stiffened shell, since increasing the

number of rings does not significantly affect the designs, this case will not be considered.

As indicated by the results shown in Fig. 5.2a, compared to the unstiffened shells,

geodesically stiffened configurations with a small number of cells in the circumferential

direction do not provide any weight savings. For the 2x4, 2x8 and 2x16 configurations,

the angle -I between the stiffeners and the axis of the shell (see Fig. 2.1) is too large

to allow a significant portion of the load to be carried by the stiffeners. However,

as the number of cells, and consequently the number of stiffeners, increases there is

a clear downward trend for the stiffened shell weight, particularly for the heavier load.

Among the studied configurations, the minimum cylinder weight is achieved at both load

levels by using 48 cells in the circumferential direction. This geometry weighs 76% and

68% of an unstiffened shell for the 1000 lb/in and 2700 lb/in loads, respectively. The

conventionally stiffened configurations are lighter than the corresponding geodesically

stiffened cylinders, particularly for the heavier load. For 1000 lb/in, the 8 and 32
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L

a

o Unstittened, I000 lb/in

Unstiffened, 2700 Ib/in

x Conventional, 1000 lb/'m

• Conventional, 2700 lb/in

_Geodesic, 1000 Ib/in

_Geodesic, 2700 lb/in

X

0 I I I I I I I I 1 I I

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Cells in the Circumfeyential Direction

Increasing Number of Cells in the Circumferential Direction.

1000

800

Weight

(lb) 600

400

200

I I I I l I I I I

a Unsfiffened, 2700 lb/in

_Geodesic, 2700 lb/'m

0 I I I , I I I I I I

0 1 2 3 4 5 6 7 8 9

Number of Cells in the Axial Direction
10

I

b - Increasing Number of Cells in the Axial Direction.

Fig. 5.2 - Structural Efficiency, of Stiffened Cylinders
Subjected to Axial Compression.
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c - Constant Angle Between the Stiffeners and the Shell Axis.

Fig. 5.2 - Structural Efficiency of Stiffened Cylinders
Subjected to Axial Compression (Continued).
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cell conventionally stiffened configurations weigh 88% and 92% of their corresponding

geodesicaily stiffened configurations, respectively. For 2700 lb/in, the 8 and 24 cell

conventionally stiffened shells weigh 83% and 87% of the corresponding geodesically

stiffened configu:ation, respectively.

Considering an increasing number of ceils in the axial direction results in heavier

designs as indicated by the results shown in Fig. 5.2b which have been obtained for 48

cells in the circumferential direction. This is due to the increase in the value of the angle

7 resulting from an increase in the number of cells in the axial direction. The design

obtained with 8 cells in the axial direction is 12% heavier than the one obtained with

the equivalent two axial cell geometry.

The results presented in Fig. 5.2a and b correspond to an increasing number of cells

in the circumferential and axial direction, respectively. As the number of ceils in the

either of these directions is changed, the angle between the stiffeners and the shell axis

is also changed causing a redistribution of the load between the skin and the stiffeners.

To isolate the effects of changing the stiffener density without causing a major change

into the load distribution between the skin and the stiffeners, trends were also obtained

for configurations with a constant angle "r between the stiffeners and the shell axis. The

rnin_um weights obtained for four different configurations that present the same angle

7 = 24* are shown in Fig. 5.2c for a load level of 2700 lb/in. The results shown

in Fig. 5.2c indicate that as the area of unstiffened sections becomes smaller, as a

result of increasing the number of ceils, the stiffened shell weight decreases. The 4x48

configuration weighs 79% of the lx12 configuration. In all cases, buckling constraints

are the only active constraints at the optimum (see Appendix B).

5.1.2 Torsion Only

A study analogous to that for compressed cylinders is performed for cylinders under
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torsion. Because of the coupling that occurs at the laminate level between the bending

and twisting responses (D16 and D,.6 terms in the constitutive relation [33]), the buckling

loads depend on the direction of the applied load. The results presented in this section
p

correspond to a negative torque. However, when both positive and negative eigenvalues

were obtained, constraints were imposed on the negative eigenvalues as well as the

positive ones to insure that buckling due to a positive torque occurs at a load level of

equal or higher magnitude. The minimum weights obtained for each confi_tration are

plotted in Fig. 5.3. The results presented in Fig. 5.3a correspond to an increasing number

of cells in the circumferential direction for 2 cells in the axial direction. In this figure,

filled diamonds and circles represent the individual designs obtained for the geodesically

stiffened configurations, the empty, diamond and circle indicate the results obtained for

the unstiffened cylinder, and finally "+" and "x" symbols are used to indicate the designs

obtained for the conventionally stiffened shell. Two values of N=_, 418.5 lb/in and 1000

lb/in, have been considered. In Fig. 5.3b, a fixed number of cells in the circumferential

direction, 24 for the geodesic and 8 for the conventional, and an increasing number of

cells in the axial direction is considered. The results in Fig. 5.3b correspond to a single

load level, 418.5 lb/in.

Comparison of Figs. 5.2a and 5.3a shows that for equal load magnitudes, the cylin-

ders in torsion are heavier than the axially compressed cylinders. As in the case of axial

compression, only buckling constraints are critical at the optSmum (see Appendix B). In

torsion, the use of even a small number of geodesic stiffeners results in sharp decreases

in weight compared to the unstiffened shells. For example, for 418.5 and 1000 lb/in, the

2x8 configuration weighs 77% and 76%, respectively, of equivalent tmstiffened cylin-

ders. This is due to the changes that occur in the buckling shapes of the unstiffened

and stiffened cylinders. For the unstiffened cylinder, the first buckling mode presents 16

full waves that extend over the entire length of the cylinder. Adding stiffeners precludes
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theformationof these long waves and consequently, increases the buckling resistance of

the cylinder. Among the geodesic configurations studied, the mimimum weight is still

achieved by using the maximum number of cells. The 32 cell geometry weighs 51%

and 50% of an unstiffened shell for 418.5 Ib/in and 1000 Ib/in, respectively. There is

little difference between the minimum weights obtained with the conventionally stiffened

cylinders and their corresponding geodesically stiffened configurations. For eight cells

in the circumferential direction, the conventionally stiffened shell is slightly lighter, but

at 32 ceils, the opposite is true.

Contrary to the case of axial compression, the consideration of an increasing number

of cells in the axial direction results in slightly lighter designs (see Fig. 5.3b). The 4

cell geodesic configuration weighs 94% of the equivalent 2 cell cylinder. The results

obtained by considering an increasing number of cells in the axial direction for the 8

cell conventionally stiffened geometry are also shown in Fig. 5.3b. Although a direct

comparison of the results obtained from the geodesic and conventional configurations

is not possible, it can still be concluded that the addition of cells in the axial direction

contributes to more important weight reductions in the case of the conventional con-

figurations that for the geodesic ones. For example, the 4x8 conventionally stiffened

cylinder weighs 88% of the 2x8 configuration.

The performance of the geodesically stiffened shell in torsion is rather deceptive. An-

other preliminary study [6] had suggested that under this loading condition, the geodesic

construction would result in lighter designs. As mentioned above, all the designs ob-

tained in this section are buckling critical Therefore, the incapacity to substantially

decrease the weight of the cylinders can be directly related to the lack of increase in

buckling resistance. For example, the critical buckling mode obtained for the conven-

tionaUy stiffened 2x8 configuration, the geodesically stiffened 2x16, 2x24, and 2x32

configurations subjected to Nzv of 418.5 ib/in arc shown in Fig. 5.4. For the conven-
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tionally stiffened shell, the first buckling mode corresponds to the first buckling mode

that would be obtained for an unstiffened shell. However, the axial waves that would

develop over the entire length of the cylinder in the case of an unstiffened configuration

are broken by the ring. For the 2x16 and 2x24 geodesically stiffened configurations, the

first buckhng modes are completely different from the one obtained for an unstiffened

shell. They present short half-waves well contained within each cell. For that matter,

they resemble the first buckling mode of a cylinch:ical sheil stiffened with stringers and

subjected to uniform axial compression. For the shell subjected to axial compression

only, it has been observed that the best way to improve the buckling resistance was by

decreasing the fraction of the applied load carried by the skin. The addition of a small

number of stiffeners that do not carry a significant fraction of the load does not result

in significant increases in the buckling resistance' It is likely that the same reasoning

applies for the type of buckling modes presented by the 2x16 and 2x24 configurations

in torsion. As the number of ceils in the circumferential direction is increased to 32,

however, the first buc_g mode switches to long half-waves extending over most of

the length of the shell, and consequently, the design should benefit from such a change

in the buckling patterns. For that number of cells, however, the angle "I between the

stiffeners and the axis of the shell is too small to allow the stiffeners to effectively break

the half-waves.

5.1.3 Combined Compression and Torsion

Finally, a combination of axial compression and torsion is considered. For this

study, two geodesicaUy stiffened confgurafions, 2x8 and 2x24, have been arbitrarily

chosen and are subjected to two different load cases. First, equal magnitudes of axial

compression N= and torsion N_ of 1000 lb/in are apphed. For the second load case, N,

is increased to 2700 lb/in and N,y is reduced to 418.5 lb/in. Minimum-weight designs for
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Fig. 5.4 - First Buckling Modes, Conventionally and Geodesically
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the geodesically stiffened shells, conventionnally stiffened shells, and unstiffened shells

are presented in Fig. 5.5. The results obtained for the same configurations subjected to

pure axial compression and pure torsion are also shown in the same figure. As in the cases

of pure torsion and axial compression only, the lightest geodesic designs are obtained

for the configuration that presents the largest number of cells in the circumferential

direction. For both load cases, the 2x24 geodesic configuration weighs 78% of the

2x8 geodesic configuration. Compared to the conventionally stiffened config'tu'ation,

the 2x8 geodesic configuration is only slightly heavier for equal magnitudes of axial

compression and torsion. The efficiency of the conventionally stiffened configurations

under pure axial compression results in lighter designs compared to their corresponding

geodesically stiffened geometries for the 2700-418.5 Ib/in load combination. The weights

obtained for 1000 lb/in of torsion are larger than those obtained for the same magnitude of

pure compression. Also, the ratios of the weight obtained under combined compression

and torsion of equal magnitudes to the one obtained under pure torsion are almost equal.

For these two reasons, it is concluded that the design of a combined-load cylinder is most

sensitive to the torsional load. As in the cases of axial compression and pure torsion,

only buckling constraints are active at the optimum.

5.2 Discussion of Design Study Results

In Section 5.1, optimum cylinder designs were presented for an unstiffened shell

as well as conventionally and geodesically stiffened cylinders. In that section, only

final cylinder weights corresponding to a given load-carrying capacity were compared.

Although comparing final weights provides an efficient way of choosing an appropriate

cylinder design, a better evaluation of the performance of the geodesic configurations

can be achieved by identifying trends in the values of the design variables as well as the

distribution of load and weight between the skin and the stiffeners. These considerations
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Fig. 5.5 - Results Corresponding to Combined Compression and Torsion.
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are discussed in this section.

5.2.1 Convergence Behavior

The history of the optimization run of the 2x24 geodesically stiffened shell config-

uration (see Fig. 2.2) subjected to an axial stress resultant N= of 2700 lb/in is used to

illustrate the convergence behavior of the design runs. The variation of the structural

weight is shown in Fig. 5.6. Between 20 and 30 design iterations were typically re-

quired to reduce the difference in weight between two consecutive iterations to less than

0.1%. This level of convergence, however, was not sufficiently stringent to guarantee

that the values of the individual design variables are well converged. The trends that

will be discussed in this section are consequently based on non-optimal values of the

design variables and could be modified if optimal values were considered. In general,

the skin thickness design variables have a higher degree of convergence than the stiff-

ener dimensions. This is due to the fact that for the configurations with a small number

of cells, the stiffener cross-section dimensions will have only a small influence on the

weight. Moreover, in the case of axial compression, the addition of a small number of

geodesic stiffeners does not result in a significant increase in the value of the buckling

load. Therefore, under compression and for a design with a small number of stiffeners,

the optimizer will tend to reduce the weight and satisfy the constraints by adjusting

the thickness of the skin ply thicknesses, leaving the stiffener cross-section dimensions

practically unchanged. The resulting skin thicknesses for these cases are almost iden-

tical to those obtained for the tmstiffened sheds. As the number of cells is increased

for a compressive loading, the stiffeners tend to comprise a larger fraction of the final

weight, resulting in better convergence for the stiffener dimensions. However for the

torsional loading case, regardless of the number of cells, the stiffeners still make up less

than 20% of the final weight and consequently, the stiffener dimensions are not as well
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converged.In many cases,severalinitial designshavebeenconsideredandthelightest

of the resulting designs has been retained.
=

The difficul_ in obtaining convergence is illustrated in Fig. 5.7. This figure presents

the results obtained for the optimal design of geodesically stiffened configurations sub-

jected to 418.5 lb/in of torsion. In Fig. 5.7a, the change in weight corresponding to

an increasing number of cells in the circumferential direction is shown. In p_s b and

c of the same fignare, variations in skin thickness and stiffener cross-sectional area are

plotted, respectively. For each 6f these parameters, the results obtained by starting from

two different initial designs are shown for 4, 8, and 16 cells. The results are denoted

Series A and Series B. Although starting from different initial designs results in little

difference in the weights and overall skin thicknesses, significant differences in stiffener

cross-sectional areas are obtained.

For the 2x8 and 2x16 confi_tions, only one buckling constraint is critical for the

final design. Consequently, the optimality of these designs can be evaluated by using

the optimality criterion for a single constraint [29]:

which can be rewritten

Of AOgb' =0,_= =i = 1, n, - (5.I)

Of/_g,l, (5.2),x i=1,...,,,.

Equation (5.2) is a measure of thecost effectiveness of the ilh design variable in affecting

the constraint. At the optimum, all the design variables that are not at their lower or
- ?

upper bounds should be equa_y cost effective in Changing the Constraint. The values of

have been calC_ated for several final designs and are listed in Table 5.3. Note that

the values of ._ should be as closely spaced as possible and that the normalization proce-

dure precludes comparisons between columns. It is s_n that for the 2x32 geodesically

stiffened Sheli and the 2x8 conventionally stiffened shell, the values of ;_are relatively
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closely spaced, indicating the proximity of an optimum. Also, in each column, the values

of >,associated with the skin design variables are generally more closely spaced. For the

2x8 and 2x16 geodesic configurations, however, the values of ._ are widely distributed,

and consequently, none of the designs presented in either column Series A or Series B

correspond to optimum designs. Thus, the differences between the designs shown in Fig.

5.7 for the 2x4, 2x8, and 2x16 configurations cannot be attributed to the occurence of

local minima but rather to the small influence of the stiffener cross-section dimensions

on the weight.

To estimate the number of design iterations that would be required to converge the

values of the design variables, the optimal design of the 2x8 geodesic configuration sub-

jected to 418.5 lb/in has been considered. First, to obtain a better estimate of the optimal

stiffener dimensions, the design variables corresponding to the skin ply thicknesses were

fixed, and only two design variables, corresponding to the stiffener thickness and height,

have been considered. After 22 design iterations, the design variables corresponding

to the skin ply thicknesses were re-introduced and 21 additional design iterations were

performed. The new design, denoted Design C, is presented in columns 6 and 7 of

Table 5.4 along with the designs corresponding to Series A and Series B for the 2x8

configuration. Although the values of the cost effectiveness parameters _ associated with

Design C indicate that this design is not optimum, their range has become significantly

smaller as a result of the additional design iterations. These also indicate that the addi-

tional design iterations had a small effect on the value of the objective function as the

weight corresponding to Design C represents 99% of the one corresponding to the 2x8

configuration obtained for Series A. These further indicate that in the design of stiffened

composite cylindrical shells, one has a great deal of flexibility in the choice of the values

for design variables since several combinations of these can be found with only minor

changes in the final weight.
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Design
Variable

Xl

:g2

Z3

Z4

X5

Z6

X7

Table 5.3 - Values of ,_ = _a_,/aa-_,.

2x32 Geod.

Compression
2700

Ib/in

1.b.f
88.0
87.1
91.3
100

2x8 Geod.
Torsion
418.5

lb/in

2x16 Geod.
Torsion

Series Series
A B

100 72.0
44.4 99.2
46.3 95.6
63.7 72.4
100 41.1

418.5

Ib/in

Series Series
A B

67.9 90.0
70.4 86.7
1.b. 100
100 94.0

72.3 76.0

2x8 Conv.

Compression
1000

tb/in

1.b.

93.0
100

95.3
95.8
1.b.
1.b.

$ Indicates that this design variable is at its lower bound.

Table 5.4 - Comparison of Three Designs Obtained for the 2x8 Geodesic
Configuration Subjected to 418.5 lb/in of Torsion

to (in)
ego (in)

t±4s (in)
t_ (in)
h_ (in)

Weight (Ib)

Series A Series B Design C

Value A Value A Value A
in in in

0.019;/
0.0293

0.00730
0.0838
0.881
398.4

100
99.2
95.6
72.4
41.1

0.0182
0.0273

1.b.
0.180
2.37

401.4

67.9
70.4
N/A
100

72.3

0.0175
0.0291

0.00793
0.0622

1.44
393.7

100
100

98.6
90.9
81.8

f Indicates that this design variable is at its lower bound.
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To investigate the cause for slow convergence in the values of the design variables,

the conse,-'vative approximav:on used for the buckling constraint by the Sequen_al Convex

Programming strategy has been replaced by a first-order Taylor series approximation.

The results obtained from the two design runs which'utilized the linear approximation

demonstrate that, for the same move limits, more rapid convergence toward optimal

values for the desi_ variables is obtained. In Fig. 5.8, the variation in the ratio of

the maximum value of the cost-effectiveness parameter to its minimum value is shown,

calculated for 10 design cycles and with each type of approximation for the 2x8 geodesic

configuration subjected to ,_18.5 lb/in Of torsion. At the optimum, the values of .x should

be equal and consequently the ratio of ,x,.,,,,_,/;,,,(,.,should be I. As indicated by this plot,

the linear approximation results in more rapid convergence in the values of the desi_

variables than the conservative approximation although the difference in the structural

weights obtained from each approximation after 10 design cycles is less than 0.2%.

For nearly all cases of unstiffened and geodesically stiffened shells which were

considered, several buckling constraints were imposed on the design. Recai that the

procedure used in the present study to impose buckling constraints is based on the

examination of the derivatives of a selected range of eigenvalues with respect to the

design variables (see Section 3.3.4). To briefly review the strategy, the derivatives of all

the computed eigenvalues in a 20% range above the lowest one are examined. Then, a

new buckling constraint is set up for every eigenvalue with a derivative with respect to

any one of the design variables more than 20% different from the derivatives of those

eigenvalues that are already constrained. The number of computed eigenvalues is an

input parameter for the eigensolver which has been set to 8 in the present study. For

all the configurations studied, the first buckling mode corresponds to a skin buckling

mode. As indicated by the results presented in Appendix B, several buckling constraints

are usually automatically set up by the procedure. In several cases, two or even three
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buckling constraintsarecritical at theoptimum. In thesecases,the valueof _ in Eq.

(3.3) is incrementedaccordingto therule

_1 -- 1.0 (5.3)

0.005
_ = _-_-1 + _ k=2,...,8

(k - 1)'

although arbitrary, the rule given by Eq. (5.3) guarantees that a finite distance will remain

between successive groups of eigenvalues. On the other hand., the difference between

_k-1 and _ is not large enough to significantly affect the final design. In torsion, as

the optimization progresses, negative eigenvalues (which correspond to buckling due to

a positive torque) are found and a buckling constraint usually corresponds to one of

those. As a result, the final designs in torsion are buckling resistant for both negative

and positive torques.

Finally, the results of the mesh convergence study presented in Table 4.2 indicate

that the 16xSxl mesh used in the design of the geodesically stiffened shell loaded in axial

compression can predict the lowest eigenvalue within 9.5% of the one obtained with the

most refined mesh. To evaluate the impact of this relatively poor accuracy on the results

obtained in the design study, new designs have been obtained for the 2x24 and 2x48

configurations subjected to axial compression. These designs are based on a 24x12xl

mesh which allows to predict the lowest eigenvalue within 1.3% of the one obtained

with the most refined mesh. The minimum weights obtained are given in Table 5.5. It

is seen that the use of a more refined mesh results in weight increases varying between

1% and 4%. Based on these results, it has not been considered necessary to redesign

the other configurations with the more refined mesh. Consequently, the discussion of the

trends in the design of geodesically stiffened shells will be based on the results obtained

with the 16x8xl mesh.
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2x24 1000
2700

2x48 1000
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5.2.2 Skin Thickness Trends

The trends in the total (not ply) thickness for the skin of the configurations considered

' in the present study are plotted in Figs. 5.9 and 5.10. The same nomenclature and

symbols used in Sections 5.I.1 and 5.1.2 are used. Since the weight depends strongly on

the value of the total skin thickness, similar trends are obtained. They will consequently

not be repeated here, and only trends in the values of individual design variables will be

discussed.

In compression, among the three design variables used to tailor the skin thickness,

only the one that designates the thickness of _e 0 ° plies reaches its lowed bound. This

occurs for the geodesically stiffened configurations that have 16, 24, 32, and 48 cells in

the circumferential direction at both load levels, as well as for the conventionally stiffened

cylinders. This indicates that as the angle between the stiffeners and the direction of

the load becomes smaller, the design benefits from a more compliant skin which allows

a larger portion of the applied load to be carried by the stiffeners. For an increasing

number of cells in the axial direction, the increase in skin thickness between 2 and 8

cells in the axial direction is mostly caused by an increase in the thickness of the 90 °

plies. The 0°, and 45 ° ply thicknesses remain almost unchanged. As was the case for

the other configurations, the design variable representing the thickness of the O" plies

remains at its lower bound. When the_gle between the stiffeners and the shell axis

is kept constant, the design variable associated with the thickness of the 0° plies also

remains at its lower bound.

In the case of pure torsion, the design variable corresponding to the _45 ° plies is the

only one that tends to its lower b0und_ _is occurs, at 418.5 Ib/in, for the 2x24, 3x24,

and 4x24 cell configurations and at 1000 lb/in for the configurations that present I6 or

more cells in the circumferential direction. By remaining at its lower bound, the design
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Fig. 5.9 - Skin Thickness Trends, Axial Compression.
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variable that designates the thickness of the ±45 ° plies allows more load to be carried

by the stiffeners. This is the equivalent of the behavior of the 0 ° plies in the case of

axial compression. More will be said about this aspect of the design study in Section

5.3, titled Skin Laminate Trends.

5.2.3 Stiffener Dimensions, Load and Weight Fractions

The trends in stiffener cross-sectional areas, load and weight fractions are discussed

in this section. The stiffener load fraction is defined as the portion of the total applied

load carried by the stiffeners; the remainder of the load is carried by the skin. The

fraction of the total cylinder weight made up by the stiffeners is called the stiffener

weight fraction.

5.2.3.1 Axial Compression

The trends in stiffener cross-sectional areas, load and weight fractions are shown in

Figs. 5.11, 5.12, and 5.13. In each of these figures, part a displays the trends obtained

by considering an increasing number of cells in the circumferential direction. The trends

obtained in the case of an increasing number of cells in the axial direction are shown in

part b, and the trends obtained for a constant stiffener angle "r are shown in part e.

Increasin 9 Number of Cells in the Circnmferential Direction. For both load levels, all three

parameters remain small for 4 and 8 cells in the circumferential direction. This is due

to the large angle 7 between the stiffeners and the axis of the cylinder which reduces

their efficiency to carry the axial load. For 4 cells in the circumferential direction, this

angle is so large that the stiffeners are loaded in tension due to the Poission's expansion

of the shell. As the angle "r becomes smaller, as a result of an increase in the number

of cells in the circumferential direction, the portion of the load carried by the stiffeners,

the fraction of the total weight that they represent, as well as their cross-sectional area

increase. The stiffener cross-sectional area reaches its maximum for 24 cells. As the

121



...-

Stiffener

Cross-
Sectional

Areas

(inz)

1.5

0.5

X

I i I i i I

x Conventional, 1000 Ib/in

• Conventional, 2700 lb/in

_Geodesic, 1000 Ibfm

+Geodesic, 2700 Ibfm

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of Cells in the Circumferential Direction

a - Increasing Number of Cells in the Circumferential Direction.

2
I I I I I i i I I

1.5

Stiffener
Cross-
Sectional 1
Areas

(in 2)
0.5

_Geodesic, 2700 Ib/in

-i
0 I I I I I l I I

0 1 2 3 4 5 6 7 8
Number of Cells in the Axial Direction

I

9 10

b - Increasing Number of Cells in the Axial Direction.
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number of cells and stiffeners keep increasing, their cross-sectional area becomes smaller

since the stiffeners do not have to be as rigid to carry their share of the axial load and

stabilize the skin. On the other hand, the stiffener load and weight fractions reach their

maximum for 32 cells and decrease slightly for 48 cells. For the 32 cell configuration,

the stiffeners carry 58% and 53% of the applied load for 2700 lb/in and 1000 lb/in,

respectively, and their weight represents approximately 30% of the total weight of the

shell.

Comparing the cross-sectional areas and load fractions carried by the swingers of the

conventionally stiffened cylinders to those of the geodesically stiffened shell stiffeners

allows to measure the efficiency of the geodesic stiffeners to carry the axial load. For

eight cells, the cross-sectional area and the load fraction of the conventionnally stiffened

shell stiffeners are substantially larger than the ones of the geodesically stiffened shells.

On the other hand, for 32 ceils, both stiffening patterns are almost equally efficient as

the stiffener cross-sectional areas and the fraction of the load that they carry are only

slightly different.

The same trends noted for the cross-sectional areas of the geodesically stiffened shells

can be observed for the individual dimensions (thickness and height) of the stiffeners.

For 4 and 8 ceils in the circumferential direction, both dimensions remain very close

to their lower bounds. As the number of cells is increased, both dimensions follow an

upward trend until they reach their maximum for 24 cells and then decrease smoothly

for 32 and 48 cells. The only exception is for the stiffener thickness at 1000 lb/in for

which the maximum occurs for the 2x32 configuration rather than the 2x24.

Increasing Number of Cells in the Axial Direction. AS the number of cells in the axial

direction is increased, the stiffener cross-sectional areas, weight and load fractions follow

a downward trend, see Figs. 5.11b, 5.12b, and 5.13b. This is due to the increasing angle

between the axis of the cylinder and the stiffeners which make these members less
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efficient in carrying the axial load. For eight cells in the axial direction, the stiffeners

carry 15% of the applied load and represent only 14% of the total weight, when compared

to 53% and 26%, respectively, for the equivalent 2 cell configuration.

Constant angle between the stiffeners and the shell azis[ When the angle between the

stiffeners and the shell axis is kept constant (7 = 24°), the stiffeners are in compression

and consequently, the behavior of the stiffened shell falls in the second category described

in Section 4.3. For these configurations, the stiffener cross-sectional areas decrease as the

number of cells is increased. The stiffener cross-sectional area of the 4x48 configuration

represents only 26% of the one obtained for the lx12 geometry. On the other hand, the

percentage of the load that they carry as well as the fraction of the total weight that they

represent reach their maximum for the 2x24 configuration and remain almost constant

for the 3x36 and 4x48 configurations. This implies that as the density of the stiffeners

increases, each stiffener does not need to be as stir to carry its share of the axial load and

stabilize the skin. Comparing the results obtained for the 3x36 and 4x48 configurations

allows to conclude that although for both configurations the same fraction of the load

is carried by the stiffeners, reducing the area of the inter-stiffener skin sections results

in a thinner skin and smaller cross-stiffener areas which in nmn allow to achieve weight

savings. For example, the 4x48 configuration weighs 89% of the 3x36 one.

5.2.3.2 Torsion

In the case of pure torsion, the trends in stiffener cross-sectional areas, load and

weight fractions are shown in Figs. 5.14, 5.15, and 5.16. Part a of these figures displays

the trends obtained by considering an increasing number of cells in the circumferential

direction whereas the trends obtained in the case of an increasing number of cells in the

axial direction are shown in part b.

Increasing Number of Cells in the Circumferential Direction. For an increasing number of
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cells in the circumferential direction, the stiffener cross-sectional area increases for 4 and

8 cells. It reaches its maximum for 16 cells, and then decreases smoothly for 24 and 32

cells. The initial increase is explained by the change in the angle of the stiffeners which

allows them to carry a larger fraction of the applied load (see Fig. 5.15a). As in the

case of the stiffener cross-sectional area, the fraction of the load carried by the stiffeners

reaches its maximum for 16 ceils in the circumferential direction. It then decreases

for 24 cells and increases slighdy for 32 cells. The portion of the load carried by the

stiffeners is considerably lower than that for compression-loaded cylinders. The highest
-. .. ..

load fraction is 24% for the 16 cell cylinder under 1000 lb/in. Since the largest stiffener

cross-sectional area also occured for 16 celIs in the circumferential direction, it appears

that the angle r obtained for this geometry, 34', corresponds to an optimum in terms of

participation of the stiffeners in the carrying of the torsional load. However, contrary

to the case of axial compression only, the maximum in the load fraction carried by the

stiffeners does not correspond to the minimum-weight design, since reductions in weight

still occur for 24 and 32 ceils.

For the conventionally stiffened shell, both the cross-sectional areas of the stringers

and the rings are shown in Fig. 5.14. In torsion, the stringers carry no axial load, and

therefore they tend to be very tall and thin. However, they influence the shape of the

. buckling modes and increase the critical load of the shell. Therefore, there presence is

_. ...... justified. The cross-sectional area of the stringers for the two conventionally stiffened

configurations are, in fact, significantly larger than those obtained for the geodesically

stiffened configurations.

Increasing Number of Cells in the Azial Direction. The trends in stiffener cross-sectional

area, stiffener load and weight fractions as a function of number of ceils in the axial

direction are shown in part b of Figs. 5.14, 5.15, and 5.16. Stiffener cross-sectional areas

and weight fractions decrease as the number of cells are increased. At four cells, the
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stiffener cross-sectional area is 65% of the one obtained for two cells. The first buckling

modes obtained for the 3x24 and 4x24 geometries are similar to the one obtained for the

2x24 geometry (see Fig. 5.4). Since, the addition of cells in the axial direction result

in a larger number of shorter stiffeners, each one of them does not need to be as stif to

stabilize the skin.

The fraction of the load carried by the stiffeners increases sharply between two and

three cells and then decrease slightly from three to four cells. For the 3x24 configuration,

the portion of the load carried by the stiffeners represents 19% of the applied load.

It is recalled that for an increasing number of cells in the circumferential direction,

the maximum in stiffener load fraction has been obtained for the 2x16 geometry, a

configuration that presents an angle "r between the stiffeners and the axis of the shell

equals to the one presented by the 3x24 configuration.

Compared to the conventionally stiffened shell, there is little difference between the

ring cross-sectional areas and those of the geodesic stiffeners. On the other hand, the

stringer cross-sectional areas are significantly larger than those of the geodesic stiffeners.

Since the stringers do not carry any load in torsion, they tend to be very thin and high.

As was the case for the cylinder weight, the cross-sectional area of the stringers tends

to decrease more rapidly that the cross-sectional area of the geodesic stiffeners.

5.2.4 Summary

In summary, the results obtained for the case of axial compression indicate that for a

structurally efficient stiffened shell, the stiffeners must be designed to carry a large portion

of the load. The addition of a small number of stiffeners that make large angles from

the loading axis does not result in a significant increase in the buckling resistance of the

structure. This is due to the small amount of load carried by such stiffeners. Also, since

the first buckling mode of an unstiffened cylindrical shell presents a short wavelength
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pattern, adding a small number of stiffeners does not significantly affect the buckling

pattern and no substantial increase in the buckling load is obtained. The advantage of the

conventionally stiffened shell is especially pronounced for a small number of cells in the

circumferential direction and for the heavier load. The results obtained by considering

a constant angle "r between the skin and the stiffeners have also indicated that weight

savings can be achieved by increasing the stiffener density without changing the load

distribution between the skin and the stiffeners.

In torsion, the geodesically stiffened shell is weight competitive compared to the

conventionally stiffened configaxrations studied. It is interesting to note that geodesic

stiffeners that present a large angle -y between the stiffeners and the axis of the shell

significantly change the distribution of static displacements and consequently the shape

of the first buckling mode from the one that would be obtained for an unstiffened shell.

The first buckling mode then presents a short wavelenght pattern and no significant

decreases in weight occur when the unstiffened sections of the skin become smaller. This

is illustrated by the results obtained from the 2x16, 2x24, 3x24, and 4x24 config'urations.

On the other hand, when the angle "r becomes smaller and the stiffeners become more

aligned with the shell axis, the first buckling mode switches to long half-waves. These

half-waves are slightly inclined with respect to the axis of the shell and they extend over

a large portion of the shell's length. In that case, the lack of stiffening members (such as

tings) that could break this pattern precludes significant increases in buckling resistance.

5.3 Skin Laminate Trends

. . ..

In the previous sections, trends in the design were obtained by studying config-

urations that present different numbers of cells in both the axial and circumferential

directions. This study has allowed identification of more efficient configurations for a

given loading regime and a comparison of the efficiency of the geodesically stiffened
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configurations with more conventional stiffening patterns. To complement these results,

it is instructive to examine how the design corresponding to a specific configuration is

affected by changes in the skin lamination sequence. This aspect of the design study

is discussed in this section for the cases of pure axial compression and pure torsion.

For axial compression, it has been noted (see Section 5.2.2) that for the configurations

that present 16 or more cells in the circumferential direction, the design variable that

designates the thickness of the 0 ° plies in the skin reaches its lower bound. It is recalled

that the angle of lamination of the skin plies is measured with respect to the axis of the

cylinder. To study the effect of removing these plies from the skin, the 2x48 configu-

ration subjected to 1000 lb/in of axial compression has been considered. Starting from

the optimal design obtained with +45", 90 °, and 0 ° plies in the skin, a new optimal

design with _+.45° and 90 ° plies only has been obtained. For this new optimal design, the

design variable that designates the thickness of the +45 ° plies reached its lower bound,

and consequently, a skin laminate made of 90 ° pries only has been considered next. The

results obtained are given in Table 5.6a and plotted in Fig. 5.17. In Fig. 5.17, the weight

has been normalized with respect to the optimal weight obtained with ±45 • , 90 ° , and

0 ° plies in the skin. It is seen that as the skin becomes more compliant, as a result of

successively removing plies, the weight of the stiffened cylinder follows a downward

trend. For example, the cylinder with the [-45/45/90_.9]s skin laminate weighs 81% of

the one with the [-45_._/451.9]902.9]0]s. On the other hand, the portion of the total weight

represented by the stiffeners and the fraction of the applied load carried by the stiffeners

increase smoothly. This indicates that for axial compression, the design benefits from a

more compliant skin which allows more load to be carried by the stiffeners. Note that

the design variable that represents the thickness of the 90 ° plies does not reach its lower

bound when only these plies are used in the skin laminate.

The results obtained in the present section also allow to evaluate the sensitivity of
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Table 5.6 - Skin Laminate Trends.

to (i_)
tgo (in)

t+45 (in)

te (in)
h_ (in)

Cylinder
Weight (Ib)

Skin
Laminate 1

a - Axial Compression.

CASES

0", 90*, 90* and 90 ° only
and __.45° plies __+.45*plies

0.005
0.0143

0.00943
0.158
1.09

328.9

[-451.d451.9/902.dO]s

N/A
0.0145
0.005
0.191
1.09

266.2

[-45/45/902.9]S

N/A
0.0176

N/A
0.303
0.86

252.8

[907o]s

1 Based on a ply thickness of 0.005 in

• ...... "i _ ._.

to (in)

tgo (in)

t±4s (in)

t e (in)

h e (in)
Cylinder

Weight (lb)
Skin

Laminate

b- Torsion.

CASES

0", 90", and ±45* pries

0.0126
0.0339
0.005
0.106

1.68

412.3

[-45/45/906.8/0zs]s

0* and 90* pries

0.0158
0.0325

N/A
0.162

1.47

384.1

[906.5_a_]s

137



(%)

100

75

50

25

0

• Normalized Weight*

[] Stiffener Load Fractions (%)

[] Stiffener Weight Fractions (%)

[-451.9]451.9/902.9/0IS ["45/451902.9 ]S

Weight of the cylinder
xl00

Weight obtained with the [.451.9/451.9/902.9/0]S skin laminate
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thebehaviordescribedin Section4.3 to changesin theratioof the skin to stiffenerstiff-

nesses.It is recalledthat in Section4.3, the behaviorof the shell hasbeenclassifiedin

eitherof two categoriesdependingon thevaluesof theangle_,betweenthestiffenersand

the axis of the cylinder. For the 2x48 configuration,the stiffenersare in compression,

andconsequently,thebehaviorof this stiffenedshell falls in the secondcategory.As a

result,bending stresseswhich produceimportantradial displacementgradientsdevelop

in the skin. Changesin the ratio of the skin to stiffenerstiffnesseswill influencethis

behavioras illustratedin Fig. 5.18whichshowstheu, componentof thestaticdisplace-

ment solutions correspondingto the optimal designsobtained for each skin laminate

considered.In eachcase,the resultscorrespondto unit axial displacementsappliedat

eachend. For the laminationsequencethat has+45°, 90°, and 0° plies,the membrane

stiffnessof the skin considerablyrestrainsthe outward deflections,and consequently,

relatively small displacementgradientsareobtained.As theskin stiffnessdecreasesand

the stiffener cross-sectionalareaincreases(Figs. 5.18band c), thesegradientsbecome

more important. For the skin laminatethat has90' plies only, the unstiffened areas of

the cylinder even display large negative radial displacements.

In torsion, the thickness of the 45 ° plies reaches its lower bounds for several of the

more densely stiffened configurations (see Section 5.2.2). Consequently, the effect of

removing these plies in the skin laminate has also been studied. The 2x32 configuration

subjected to 1000 lb/in has been chosen, and the effect of removing the 45 ° plies in
, = ,

the skin laminate is studied. The results are given in Table 5.6b and plotted in Fig.

5.19. As indicated in Fig. 5.19, removing the 45 ° plies in the skin results in lighter

designs. However the decrease in weight is smaller compared to the example studied for

axial compression only. For example, the cylinder with the [906.5/03.2]s skin lamination

sequence weighs 93% of the one with the [-45/45/906._/02._]s skin laminate. For the

lighter design, a larger portion of the applied load is carried by the stiffeners which also

139



8_3 . A

4_0 . B

a- [-451.9/45t.9/902.9/O]s.

b- [-45/45/9o2.9]s.

.7_) * A

-.250 - C

C- [907.0]5.
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represent a larger fraction of the total cylinder weight. Note that as a result of removing

the 45 ° plies, none of the other design variables went to their lower bounds.

, 5.4 Verifications

The design results discussed in this chapter have been obtained with the models

presented in Chapter 4. Several of these models discretize only a portion of the shell

and approximate boundary conditions are applied along lines of geometrical symmetries.

In this section, the validity of these models is investigated by considering larger mod-

els. In the case of the 2x4 configuration in compression and the 2xg configuration in

compression, torsion and combined compression and torsion the results obtained with

the partial models have been verified with the full model. In all the other cases, larger

portions of the shell have been considered and the approximate boundary conditions used

during the design study (see Chapter 4) have been applied along the lines of geometrical

symmetries. Since the lowest eigenvalue of the buckling problem depends on the static

solution and it is more difficult to predict than the distribution of the strains, the other

component of the structural response used in the design study, it has been chosen as a

measure of the accuracy of the finite element model. The results are given in Table 5.'/.

In the case of axial compression, the results obtained during the design study agree very

closely with the one obtained with the larger models. The only deviation is with the 2x8

configuration for which the lowest cigenvalue obtained with the partial model differs by

8% from the one obtained with the full model.

In torsion, the results are also in very good agreement, except for the 2x32 conven-

tionally stiffened shell in torsion for which a difference of 2% in the first eigenvalue has

been obtained when comparing the 3 cell model used in the optimization study with a

6 cell model. It must be noted that the c.hoice of the model used to study this particular

geometry and loading case has been strongly influenced by the computational require-
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merits. Also, a difference of 2% in the lowest eigenvalue does not necessarily translate

itself into a similar increase in weight. Results presented in Section 5.2.1 have shown

that changes of less than 4% in weight may occur for models that predict the lowest

eigenvalue with as much as 9.5% of error.

5.5 Computational Requirements

In this section, CPU times required for the calculation of some of the optimal configu-

rations presented in Section 5.1 are discussed. These results complement those presented

in Section 5.2.1 where convergence characteristics have been discussed and estimates of

the numbers of exact analyses required to obtain the optimal configurations have been

given. In all the cases, the CSM Testbed processors INV, SSOL, and EIG have been

used to calculate the static response and the eigensolution, respectively. Processor INV

factors the assembled system matrix stored in sparse-matrix format, and processor SSOL

performs forward reduction and back substitution on the factored system matrix. Pro-

cessor EIG implements an iterative procedure involving a Rayleigh-Ritz approximation

and a Stodola-Type method for extracting eigenpairs [16]. In all cases, the eigenvec-

tors obtained at the previous design point have been used to start the calculation of

the eigensolution. As the optimization run progresses, this contributes to a significant

reduction in the number of iterations required to compute the eigensolution. The runs

have been performed on a Convex C220 superminicomputer located at NASA Langley

Research Center. The computer consists of two central processing units, each of which

can compute from 20 to 40 MFLOPS for a computationally-intensive calculation.

The statistics obtained are presented in Table 5.8. The number of the six-degrees-of-

freedom nodes included in the finite element model and the number of design variables

considered in the optimization problem are given in the first two columns of the table.

The CPU time required for the calculation of the static response, the geometric stiffness
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Table 5.7- Verifications.

Configuration

Unstiffened

2x 4

2x 8

Loading

Compression

Compression

Compression

Torsion

Combined

Level

(tb/in)

2700

2700

2700

418.5

2700 - 418

Model

L x 90*

L/2 x 360*

L x 90*

L x 360*

L x 45*

L x 360*

L x 135"

L x 360*

L x 135"

L x 360*

2 x 16 Compression 2700 L x 22.5*
L x 180'

Torsion 418.5 L x 67.5*

L x 135'

2 x 24 Compression 2700 L x 22.5*
L x 120"

Torsion 418.5 L x 45*

L x 90*

2 x 32 Compression 2700 L x 11.25"
L x 90*

2 x 32 Torsion 418.5 L x 33.75*

Conventional L x 67.5*

2 x 48 Compression 2700 L x 7.5*
L x 60*

4 x 48 Compression 2700 L/2 x 7.5*
L x 30*

8 x 48 Compression 2700 L/2 x 7.5*
L/2 x 30*

1.001
0.9998

1.001

1.000

1.018

0.937

0.9994

1.003

1.020

1.000

1.035

1.043

1.001

0.9990

1.083

1.084

0.9991

0.9932

1.118

1.113

1.000

0.9796

1.137

1.132

1.062

1.058

1.011

1.019

Mesh

rrln, X rlne X Ine

12 x 12 x 1
12 x 48 x 1

16x 8x 1

16 x 32 x 1

12x 6x 1

12 x 48 x I

12 x 18 x I

12x48 x 1

12 x 18 x 1

12x48 x I

12x 6x l

12 x 48 x I

12 x 18 x 1

12 x 48 x I

12x 6x l

12x48xl

12 x 18 x I

12 x 48 x I

12x 6xl

12x48x I

6 x24x I

6 x48x 1

12x 6xl

12x48xl

12x 6x 1

24 x 24 x 1

24x 6x 1
24 x 36 x 1
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matrix and its assembling is given in column 3. In the next column, the CPU time

required for one iteration in the eigensolver is given. The number of iterations in the

eigensolver required during a specific design run is problem dependent and, as mentioned

above, tends to decrease as the optimization run progresses. For the size of problems

considered in the design study, bet-ween 30 and 40 iterations were required to converge

the lowest eigenvalue for the initial design. As the optimization progresses, the number

of iterations usually decreased to approximately 8 and, for the last few design points,

only 2 iterations (the minimum number of iterations required to measure the degree of

convergence) were generally required. For a design run that would require 20 design

iterations, it is estimated that approximately 120 iterations would be required in the

eigensolver. Finally, the last column gives the CPU time required for the calculation

of the derivatives of the constraints with respect to the design variables. In all cases,

the semi-analytical strategy (see Section 3.3.3) has been used. As an illustration of the

_verall computational time required for the calculation of an optimal design, consider

'.he problem that counts 2073 nodes and five design variables. For that problem, almost

11 CPU hrs. are required to perform 20 design iterations.

As indicated by these results, the calculation of optimal designs for the class of

;tructures considered in the present study is computationally very intensive. It has

_-...."orced the use of partial models which were also required to limit the amount of disk

;pace storage. Finally, since the analysis, without the inclusion of the time required for
-- -: _ -_ _- .- .!_i

he eigensolution, is more expensive than the derivative calculations (columns 3 and 5

_f Table 5.8), it can be concluded that the use of the SA strategy results in savings over

he OFD approach. Also the amount of savings achieved tends to increase with the size

ff the problem.
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Table 5.8- CPU Times I Required for the Calculation of Optimal Designs.

Number of Number

of nodes design variables

659 7
1211 7
2073 5

3299 5

CPU time

for Analysis _
(see.)

84.8
182.7
425.1
771.7

CPU time in

eigensolver 3
(see.)

9.0
20.0
41.0
75.0

CPU time for
derivative calc. _

(scc.)

81.0
142.3
261.6
415.7

'The runs have been performed on a Convex C220 superminicomputer.

2 Does not include CPU time required for eigensolution.

3 Per iteration in the eigensolver.

4 Per design variable.

.:._" "
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Chapter 6

Global/Local Analysis and Design

The design study presented in the previous chapter is based on constraints that have

been evaluated using the "global" response of the structure. No considerations have been

given to localized effects such as the stress concentration around a stiffener intersection

or the tendency of the stiffeners to delaminate from the skin. Considering such aspects in

a design process would require the use of much refined meshes or even three-dimensional

models and such a brute force would likely saturate even the largest computers available

today or even in the foreseeable future. This has been recognized by many researchers

in the field of structural analysis and several methods have been developed to reduce the

cost of predicting the localized effects in complex structural configurations.

These methods are usually known as global/local analysis strategies, and although

considerable work has been reported in the literature on the development of such tech-

niques, no work has been documented on the inclusion of a global/local analysis strategy

into an optimization process. This is the subject of this chapter which describes the work

done to implement a two-dimensional to two-dimensional (sometimes called "zooming")

global/local analysis strategy into an optimization process. The justification for address-

=
ing this issue in the context of this research is first outlined. Then, the methodology

of the global/local analysis and the modifications that have been made to the optimiza-

tion system previously presented in Chapter 3 are described. Finally, an example that

validates the implementation of the strategy is presented.

6.1 Justification

The economy realized in the study of complex structural configurations is normally
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the first argument put forward to justify the use of a global/local analysis strategy. These

economies result from using a refined mesh, or a computationaUy more expensive theory,

, over only a smaller region of the domain to predict the localized effects. For example, the

design of stiffened panels may be performed using beam elements to model the behavior

of the stiffeners. Consequently, no local buckling of these members can be predicted. In

this case, a local model, accommodating plate elements, could be used to predict such

buckling modes and provide the design process with information on the stiffener dimen-

sions that must be used to avoid local buckling of the stiffeners. Another example could

be the design of composite structures with stress concentrations. It is well-known for

composite materials that through-the-thickness stress components are sometimes respon-

sible for delaminations that result into failure of the structural component. The finite

element models used in the study of complex structural configurations, however, arc

usually plate or shell models that cannot predict through-the-thickness effects. In such

a case, a local model that would implement either a refined plate or three-dimensional

elasticity theory could be used to provide the design with information on the magnitude

of the critical through-the-thickness stress components. Other examples, where local

models could be used, include the prediction of the strain gradient distribution at the

skin stiffener intersection of a stiffened panel [34] and the calculation of the stress con-

centration factor for panels with cutouts [35]. Another reason for addressing the issue

of global/local analysis and design is to allow the assessment of the feasibility and the

computational requirements of using such a strategy in a design process.

6.2 Methodology of Global/Local Analysis and Design

In this section, the methodology used for the global/local analysis is first described.

This description is based on the work presented in Ref. [35]. Secondly, the formulation

of the design problem is presented. This presentation includes the modifications that take
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into account the additional term that arises in the calculations of constraint derivatives

(see Section 3.3.3) at the local level. The details of the organization of the data base

and the new processors required for the implementation of the global/local strategy are

described in Appendix C. This work expands the capabilities of the opdrnization system

already presented in Chapter 3 and in Ref. [27].

6.2.1 Global/Local Analysis [35]

The global/local analysis stress strategy used herein is defined as a procedure to

determine local, detailed stress states for specific structural regions using information

obtained from an independent global stress analysis. It employs separate, locally refined,

finite element models for specific regions that need a more detailed interrogation. As

a result, a prior'/ knowledge of the regions that will eventually need a more detailed

interrogation is not required.

Three main reasons may be invoked to justify the choice of this strategy. The

first reason concerns the amount of validation work that has been recently published

on both two-dimensional to two-dimensional (Ref. [35]) and two-dimensional to three-

dimensional global/local analysis (Ref. [36]). Secondly, as a result of the work of

Ransom, the interpolation procedures that are used in this study are now available in

the CSM Testbed. This considerably reduced the amount of work associated with the

generation of refined displacement fields and, as such, shortened the time required for

the implementation of the strategy. Finally, the modularity of the resultant implementa-

tion constitutes another reason for the choice of this global/local strategy. On parallel

computers, this modularity could eventually be used to perform the computations related

to each model on different processors.

The local model refers to any structural subregion within the defined global model.

The terminology of the global/local methodology presented herein is depicted in Fig. 6.1.
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The global model is a finite element model of a structural component. A region requiring

a more detailed interrogation is subsequently determined. An interpolation region is then

identified around the critical region as indicated in Fig. 6.1b. The global/local interface

boundary, indicated in Fig. 6.1c, defines the intersection of the boundary of the local

model with the global model. The definition of the interface boundary may affect the

accuracy of the interpolation procedure and thus the local stress state. Criteria for defining

the interface boundary are discussed in Ref. [35].

To determine local, detailed stress states, the method requires that a finite element

analysis of the global structure is first performed to obtain its overall response. Then,

a critical region is identified from the results of the global analysis. Finally, the global

solution is used to obtain an applied displacement field along the boundary (i.e., boundary

conditions) of an independent local model of the critical region. The applied displacement

field is computed using a spline interpolation of the displacements and rotations calculated

from a global analysis. Spline interpolation is a numerical analysis tool used to obtain

the "best" local fit through a set of points. Spline functions are piecewise polynomials

of degree m that are connected together at points called knots so as to have (m- 1)

continuous derivatives. The interpolation problem may be stated as follows:

- . ." ..,

"''7

_ . - ; ": /al/bl}a2 b2

= " ,

a, b',

(6.1)

where [s(z_,y_)] is a matrix of interpolated functions evaluated at q points, the vector a

defines the unknown coefficients of the interpolation functions, and the vector b consists

of known values of the field b being interpolated based on q points in the global model.
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To interpolate local values, the matrix s is formed, inverted, and multiplied by b to

compute the vector a. The vector a is then used to interpolate the local values through

the following equation:

j=l

(6.2)

where bg/_ denotes the refined interpolated field, and l the number of points for which b

must be evaluated_

6.2.2 Optimization Problem

Although a two-level global/local strategy is used to predict the structural response,

a single optimization problem is formulated. In the terminology of optimization the-

ory, this corresponds to a one-level solution strategy. This implies that a single set of

design variables and a single objective function are defined. However, constraints can

be evaluated using the structural response obtained from either the global or the local

model. The approach used herein is consequently different from the multilevel opti-

mization strategies documented in the literature (see, for example, Refs. [37-39]). As

a result of adopting a one-level solution strategy, the formulation of the optimization

problem does not significantly differ from what has already been presented in Chapter 3.

The only major modification Occurs in the calculation of the constraint derivatives at the

local level, and the formulation that must be used in this case is now presented.

The formulation used for the calculation of the constraint derivatives with respect

to the design variables has already been presented in Section 3.3.3, Eqs. (3.6)-(3.17).

For the global model, this formulation is still valid, and the developments presented in

the above mentioned section can be directly used to compute the derivatives. The key
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information in the computation of the derivatives of the three types of constraints sup-

ported by the optimization system (see Eqs. (3.3)--(3.5)) consists of the derivatives of the

static displacement solution with respect to the design variables. Once this information
)

is known, simple operations can be performed to obtain the derivatives of the constraints.

In the case of a local model, the equilibrium equations can be written:

KT2 Ka,aJ u,¢ = R

(cf. 3.7), where u,, and u_¢ represent the unconstrained and constrained components of

the displacement vector obtained from the local analysis, respectively. For a local model,

contrary to the case of a global analysis, the displacement vector u,, obtained by solving

Eq. (5.3) does not need to be scaled. Scaling is unnecessary since the vector of nonzero

displacement boundary conditions, ut¢, has been formed using the static displacement

solution corresponding to the design load. Referring to Section 3.3.3, ut° has been

extracted from u_ which is scaled and represent the static displacements that occur when

the structure is subjected to the design load F_. As a result, in the case of a local model,

s(x), the scale factor defined in Eq. 3.10, is always 1. Thus, its derivative with respect to

a design variable is 0. In this context, the derivatives of the unconstrained components

of the displacement vector are consequently given by:

dut¢ dK1 _ dK1 1K1,1 dut'''2-u=--Kl.1 ' ut, 'uh, (6.4)
dzi dzi dzi dzi

v _ has been added since, in(Compare to Eq. 3.15). In Eq. 6.4, the term -_,i,_ _,

general, the static displacement solution at the boundary of the local model is influenced

by a change in the value of the design variable x,. This term consequendy represents

the change in the load distribution due to a change in the value of z_. In the case

of a global model, _"K_,_-_=,is 0 since the boundary conditionsapplied to the global

model are constant.The term _ iscomputed by extractingfrom _ the componentsdz, (Iv,
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corresponding to the nodes located on the boundary of the interpolation region. These

components are then processed by the interpolation procedure to generate d,_-a_.- Once

has been obtained, Eq. 6.4 can be solved for _ The vectors _ and _ are then
• dx, dz, " d_, d_:,

formed into a single one and used to expand the solution vector u_ into a first-order Taylor

series expansion. Then, the steps outlined in Section 3.3.3 for the calculations of the

constraint derivatives once the derivative of the solution vector with respect to a design

variable is known can be used. It is recalled that the main reason for the sensitivity

analysis to result into savings is that no new factorization of the system matrices is

required. This holds true in the case of a local model.

6.2.3 General Organization

The general organization of the calculations is shown in Fig. 6.2. The new processors

that have been developed axe described in Appendix C. This organization presumes that

a previous analysis of the global model has been performed. Therefore, the regions

that will need a more detailed interrogation have already been identified. As a result,

the interpolation regions and the local model axe defined immediately after the global

model has been set up. This occurs before the fast exact analysis of the global model is

performed. Then, ADS is fired up and the default values assigned to the parameters that

control the optimization process can be reset. The operations necessary for the calculation

of an optimum can then be started. These calculations are as indicated in Fig. 6.2. Note

that the optimization system supports local models that include several interpolation

regions. Such a feature is necessary, for example, in the design of stiffened structures

when one of the stiffener intersections represents the local region of interest. Because

the interpolation procedure uses surface splines, the definition of separate interpolation

regions for the skin and the stiffeners is necessary in such a case.
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6.3 Validation

In this section, an example is presented to validate the formulation presented in

, the previous sections of this chapter. Since the optimi_tion system has already been

validated on several examples in other sections of this study, only the new procedures that

perform the calculation of the constraint derivatives and the coordination work between

the models (see Appendix C) will be validated here.

6.3.1 Example 1

In this example, the optimal design of a rectangular panel with a central circular

cutout is considered. Examples of panels with cutouts have been used extensiveIy by the

global/local analysis researchers to validate their strategy. This is partly due to the facts

that closed-form elasticity solutions are available, and also because the analysis of these

structures benefit particularly from using a global/local strategy. This example problem

has been analyzed in Ref. [35].

The isotropic panel considered is shown in Fig. 6.3. The overall panel length L is 20

in, the overall width W is 10 in, and the cutout radius r, is 0.25 in. This geometry gives

a cutout diameter to panel width ratio of 0.05 which corresponds to a stress concentration

factor of 2.85 (see Ref, [35]). The loading is Uniform axial compression with the loaded

ends Of the panel clamped and the sides free. The material system for the panel is

aluminium with a Young's modulus of 10,000 ksi and Poisson's ratio of 0.3.

The finite element mesh shown in Fig. 6.4 is used to model the global behavior

of the panel. It also constitutes a good approximation to its local behavior. The finite

element model has a total of 160 9-node quadrilateral elements and 600 nodes. The

element corresponds to a curved C ° shell element that has been installed in the CSM

Testbed and denoted ES 1/EX97.

The in-plane stress resultant distributions obtained with the global model reveal
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severalfeaturesof the global structuralbehaviorof this panel. They also constitute

guidelinesfor thedefinitionof the boundaryfor thedefinition of the local model. Based

on thesedistributions, the shadedarea shown in Fig. 6.4 has been identified as a
p

critical region and discretized using a more refined finite element model. However, the

interpolation region used to _nerate the sptine matrix corresponds to the entire plate.

The local model, shown in Fig. 6.5, has a total of 144 9-node elements and 624 nodes.

The same element used for the global model has been used in the refined model.

The optimization system has been applied to the minimum-weight design of the

plate. Two constraints are considered: a buckling constraint, and a maximum strain

failure criterion constraint evaluated along the edge of the cutout, at panel midlength.

They are evaluated using the structural response obtained from the global and the local

model, respectively. Since the material is isotropic, the strain at failure of the material

has also been assumed isotropic and set to 0.002. A single design variable, the thickness

t of the plate, is considered. The initial design corresponds to a thickness of 0.1 in and

for this design, both constraints are violated.

For the optimal design, only the buckling constraint is active. The optimal thickness

value is 0.226 in. The optimization run has required a total of 7 design iterations, each

iteration requiring a total of 363 CPU s on a Convex C220 supermirdcomputer. The

history of the optimization run is shown in Fig. 6.6. In the context of global/local

analysis and design, a design iteration includes the calculation of the constraints and

their derivatives for each model.

The distribution of the longitudinal stress resultant Nz at the panel midlength nor-

malized by the nominal stress resultant is shown in Fig. 6.7 for the optimum design.

Although the shape of the distribution does not change as the design is modified, the plot

shown in Fig. 6.7 indicates that to accurately predict the stress concentration factor at

the edge of the cutout, a very refined mesh must be used. Predicting this factor using a
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Fig. 6.5 - Local Finite Element Model.
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single-levelanalysiswouldrequirea refinedmesharoundthe cutout whichwould result

in a computationalcost increasefor theoptimizationrun. For example,thecost of the

buckling analysiswould thensubstantiallyincreasecomparedto predictingthe buckling

load with the model shownin Fig. 6.4.
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Chapter 7

Concluding Remarks

• A preliminary design study of minimum-weight geodesically stiffened shells for air-

craft fuselages has been performed. Because of the need for an optimization tool

capable of analyzing complex structural configurations, such as the geodesically stiff-

ened shell, a new optimization system based on the finite element code CSM Testbed

and the optimization pro_am ADS has been developed. As such, the optimization

system can be used to mhaimize the weight of any structure that can be analyzed

via a finite element model subject to buckling, displacement, and material failure

constraints. Three types of design variables can be defined. They correspond to the

thicknesses or orientations of individual plies of finite elements or groups of finite

elements. The third type of design variable corresponds to the size of finite elements.

It consequently allows a limited amount of shape optimization in terms of stiffener

heights to be performed. Although, the first type of design variable is referred to as

a ply thickness, it can be used to design the thickness of a component in the case

of an isotropic material. The loading can be applied using either nodal forces or

displacement boundary conditions. In the latter case, an automatic procedure has

been implemented to scale the structural response to the level of the design loads.

Both overall finite difference and semi-analytical sensitivity derivative schemes have

been implemented for the calculation of the constraint derivatives with respect to the

design variables. Finally, the number of buckling constraints that must be imposed is

determined by a procedure based on the derivatives of the eigenvalues with respect

to the design variables. The optimization system has been validated on examples that

have shown that it can be used to design structures that present a complex buckling
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responsesubjectedto combined load conditions.

• The analysis of geodesically stiffened shells subjected to compressive and torsional

loadings has provided an insight into the load distribution and prebuclding defor-

mations of the shells as the angle between the stiffener and the axis of the shell is

varied. In compression, for a high value of this angle, tension due to the Poisson's

expansion of the shell develops in the stiffeners. As the angle becomes smaller, the

stiffeners start carrying a larger portion of the axial load, and, as a result of their

curvature, generate substantial radial displacement gradients. In torsion, radial dis-

placement gradients also develop since half of the stiffeners are in tension and the

other half are in compression. For this loading condition, the skin section between

the stiffeners deforms into a doubly.curved surface as two of the stiffeners that sur-

round it are in tension and tend to pull the skin inward, and the other two tend to

push it outward.

• The design study has shown that minimum-weight cylinders have relatively closed

spaced stiffeners. Under pure axial compression, the minimum-weight design corre-

sponds to the configuration with the highest number of ceils in the circumferential

direction. For this loading condition, the conventionally stiffened shell is more effi-

cient that the geodesically stiffened one, especially for the heavier load. Under pure

torsion, there is little difference between the minimum weights obtained for both

stiffening patterns. The same is true for combined compression and torsion of equal

magnitudes. For 2700 Ib/in of compression and 418.5 lb/in of torsion, the efficiency

of the conventionally stiffened shell under pure axial compression makes the designs

obtained for this load combination lighter than the ones obtained for the geodesically

stiffened shell.

• In compression, the stiffeners play a more active role as the maximum stiffener load

fraction is close to 60% comp_ to 25% in torsion. This is among the reasons why
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the conventionally stiffened shell is so efficient in compression since their stiffeners,

even for a small number of them, still carry a large portion of the applied compressive

load.

• No consideration has been given to the difference in the manufacturing cost of the

different stiffened configurations. It is likely that since the geodesically stiffened

configurations can be filament-wound, their manufacturing cost will be lower than a

corresponding conventionally stiffened configuration.

• The design study has also shown that achieving convergence in the values of in-

dividual design variables requires many more design iterations that converging the

value of the weight. The results obtained by replacing the reciprocal approximation

used for the buckling constraint by the Sequential Convex Programming strategy

by a linear approximation have also shown that convergence in the values of the

design variables may be achieved faster with the linear approximation. Although the

conservativeness of the reciprocal approximation helps during the first few design

iterations by allowing larger move limits to be used, it also decreases the rate of

convergence in the values of the design variables once a design for which some of

the constraints become critical has been obtained.

• Skin laminate trends have shown that under compressive loading the design benefits

from removing the 0* plies from the skin. This is due to the more compliant skin

which allows more load to be carried by the stiffeners. The lightest design has been

obtained for a skin laminate that includes 90* plies only. For this skin laminate and

the 2x48 configuration, 58% of the applied load is carried by the stiffeners. Under

torsion, a lighter design has resulted from removing the 45* plies from the skin of

the 2x32 configuration.

• The d_sign study has also shown that although weight savings could be achieved by

properly choosing the stiffener arrangement of the carrying structure, considerable
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savingscanalsobeachievedby properlytailoring the skin laminate.For example,

underaxial compression,a weightreductionof 20% hasbeenobtainedby removing

the0* plies in the skin laminate.

• A global/local analysisand designstrategyhasalso beenpresented.The strategy

employsa single-leveloptimizationproblem.Thetwo-level analysisprocedureuses

a zoomingglobal/localfinite elementtechnique.Constraintscanbeevaluatedusing

either thestructuralresponseobtainedfrom theglobalor the localmodel. The semi-

analyticalsensitivityanalysisformulationhasbeenmodified to accountfor the extra

term that appearsin the caseof a local model. The implementationof the overall

strategyhasbeenvalidatedon anexample.

7.1 Recommendations for Future Work

• As indicated in Chapter 5, the calculation of optimal designs for configurations that

present several thousands of degrees-of-freedom is a computationally intensive task.

The present optimization system uses a direct method for the solution of the equi-

librium equations. A possible enhancement could be to add the possibility of using

an iterative algorithm. As the optimization progresses, the static solution obtained at

the previous design point would become a very good estimate of the solution at the

current design point, resulting in a rapid convergence. Another important component

in the overall cost of the oplLrnization was the calculation of the eigenvalues of the

optimization problem. The present algorithm uses an iterative procedure involving a

Rayleigh-Ritz approximation. It could be replaced by the Lanczos algorithm which

is especially efficient when only a few of the smallest eigenvalues ate desired.

,, Concerning the design study, it has been shown that under axial compression and

pure torsion important displacement gradients develop due to the curvature of the

stiffeners. To better evaluate the impact of these displacements on the buckling
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and post-buckling responses of the stiffened shell, nonlinear analyses of the optimal

designs should be performed. Such displacements are likely to cause important

through-the-thickness stress components at the skin/stiffener interface. To evaluate

their magnitude, the zooming global/local strategy could be improved to include a

local three-dimensional model that could predict the value of these stress components.
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Appendix A

Algorithms for the Computation of an Optimal Design.

This appendix presents the flowcharts of the algorithms that are used for the com-

putation of an optimal design. These algorithms have been implemented into CLAMP

procedures. A description of each procedure is given in section 3.3.3.

.. . . . .-

...-

Begin

End.

Set-up an initial design
Define the finite element model
Define sublaminates

Use BDLM to build lamination sequences
Specify the nodes where the load is applied
Define the macros indicated in Table 1.1 of Ref. [27]
Use OPTI to define:

The design variables
The constraints

The objective function
Execute TB20 to start ADS

Do while convergence or the maximum number of iterations have
not been reached
Restore the value of info
If info = 1 then

Compute the value of the constraints
and the objective function

Endif
If info = 2 then

Compute the derivatives of the constraints and the
objective function with respect to the design variables

Endif

Call the optimizer
Enddo

Fig. A.I - Procedure des_ana_iter.

.. • . .
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Begin

End.

If info = I then

Copy from library 2 to library 1
The new values of the constraints

The updated information concerning the buckling constraints
The buckling modes and eigenvalues datasets

Delete library 2
Copy information contained in library 1 to library 2'
Call the procedure analysis
Use OPTI to compute the objective function
and evaluate the constraints

Endif
If info = 2 then

Call the procedure derivative.
Use OPTI to calculate the derivatives of the objective function
and the constraints with respect to the design variables.

Endif

1To save disk space, datasets K_..nsubs.ksize and A_LAP..ic2.isize are not
copied.

Fig. A.2 - Procedure branch_on_info.

7
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Begi_

End

Rebuild laminate sections (LAM.OMB.nsectl. 1 datasets)
Build the stiffness matrix
Factor the stiffness matrix

If displacements are specified
For each load case

Compute the static displacements
Compute the scale factor

Else (forces are applied)
Compute the stauc displacements

Endif

If displacements are specified
Use the super'position principle
to obtain the static displacements
corresponding to the complete loading condition

End.if

If strain constraints are imposed
Compute the strains

Endif

If buckling constraints are imposed
Compute and assemble the geometric stiffness matrix
Compute the eigenvalues, using, if available, the eigenvectors
obtained at the previous design point as initial trial vectors

Endif

Fig. A.3 - Procedure analysis.
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Be_,i_
Find the sequence number of the dataset containing the design variables
Transform the value of the design variables into macrosymbols
Transform the type of the design variables into macrosymbols
If an exact analysis is required

Perform an exact analysis
End.if

For each _sign variable z+
Compute _z+, 1/..xz+, and -1/,,Xz, ........
Perturb z+
If the design variable is a height (type = 3)

Execute processor E
Endif

Rebuild the lamination sequences
(Execute processors BDLM and LAU)
Copy the new constitutive equations to library 1
Compute and assemble KP, the stiffness matrix corresponding to the

erturbed design
finite difference formulation is used then
Factor KP
If loading is applied using nonzero boundary conditions then

Compute perturbed displacement vector
corresponding to each load component
Retrieve the scale factor

corresponding to each load component
Else (Loading is applied using nodal forces)

Compute perturbed displacement vector
Endif

Form the total displacement vector
Else (sensitivity analysis is used)

Use a finite difference formula to compute d'K/clz_
If loading is apphed using nonzero boundary conditions then

For each load component
Compute du/dzi

Compute dI:t/dzi (see Eq. 3.14)
Else

Compute for du/d:ei
Endif

Form the total displacement vector
Endif

Fig. A.4 - Procedure derivative.

+
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If bucklingconstraintsare imposed
Computeand assembleKGP, the geometricstiffnessmatrix
correspondingto theperturbeddes,gn.
Retrieveeigenvaluescorrespondingto thecurrentdesign
ff a finite differenceformulationis used_en

Solvetheeigenvalueproblem
Computethe derivativeof thecomputedeigenvalues
with respectto x_

Else (senstivity analysis is used)
Use a finite difference formula to compute dK_/dz_
Compute the derivative of the computed eigenvalues
with respect to z_

Endif

Save the derivatives of the computed eigenvalues on a dataset
If point strain constraints are imposed then

Compute strains corresponding to the perturbed design
Endif
Set the design variable to its original value
If the design variable is of type 3 (height) then

Execute processor E
Endif

Execute processor OPTI to compute the derivative of the
constraints with respect to this design variable

End of the loop on the design variables
End.

Fig. A.4- Concluded.

" " "' . .'i:" "

-- ';i-:'; " :
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Appendix B

Design Data for Optimum CyiinderConfigurations

Table B.1 - Unstiffened Cylinder Design Data.

a - Skin Laminate = [-45/+ 45/90/0]s.

zl to (in)

• 2 tgo (in)

:ra t±4s (in)

Skin Thickness (in)
Cylinder Weight (lb)

Buckling

Skin Strength

COMPRES SION TORSION

i000

(lb/in)

0.00759

0.0303
0.0167

0.142

433.3

6E-04,
8E-04
-0.83

2700

(Ib/in)

0.0130

0.0483

0.0278
0.235

71Z0

1.4E-03,
8E-04
-0.72

418.538

(Ib/in)

0.0306

0.0402
0.00734

0.171
519.9

9E-04

-0.86

1000

0b/in)

0.0415

0.0623
0.0118

0.255

775.7

0.003

-0.78

r.

.T: :

z1 to (in)
• _. tgo (in)

Za t±45 (in)

Skin Thickness (in)

Cylinder Weight (Ib)

Buckling

Skin Strength

COMBINED COMPRESSION AND TORSION

N_ = i000,

N_ = 1000 lb/in

0.0458

0.0627

0.0172

0.286

869. I

0.002
-0.86

N_ = 2700,

Nzy = 418.5 Ib/in

0.0392

0.0487

0.0254

0.277

843.7

3E-04
-0.84

zi = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) < o_
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b - Skin Laminate = [-45/+ 45/90]s.

zl tgo (in)

z_ t±45 (in)

Skin Thickness (in)

f Cylinder Weight (lb)
Buckling

Skin Strength

COMPRESSION

1000

(Ib/in)

0.0339

0.0201

0.148

451.3

4E-04,-0.13
-0.91

zi = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) <
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Table B.2 - Geodesically Stiffened Shell Design Data (Compression, Torsion).

a - Skin Laminate = [-45/+ 45/90/0]s.

.- , -.:. " = ....

2x____4

Zl to (in)

x2 tgo (in)
Xa t±4s (in)

z4 tg (in)

zs ha (in)

Skin Thickness (in)

Cylinder Weight (lb)

stiff. Load Frac.(%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength

S_ff. Strength T

Stiff. Strength C
2x... 8
z_ to (in)

x_ tgo (in)

z3 t±4s (in)

z4 t 9 (in)

zs ha (in)
Skin Thickness (in)

Cylinder Weight (lb)

Load (%)
Stiff. Weight Frac. (%)
Buckling

Skin Strength

Stiff. Strength T

Stiff.StrengthC

COMPRESSION TORSION

i000

(zb/i.)

0.005

0.0328

0.0157

0.04t

0.4t

0.138

422.8

T_

0.4

,0.004,

2E-04,

,0.003,
,0.003

-0.001,

-0.004,
-0.009

-0.80

N/A

-0.99

O.O05t

0.0329

0.0159

o.o4t
0.4t

0.139

427.2
0-2

1.0

0.006

-0.80

N/A

-0.95

2700

(Ib/in)

0.00887

0.0522

0.0272

0.0457

0.424

0.231

704.2

Tt
0.2

-6E-04,

0.003,

0.004,

0.001,
-0.01

-0.68

N/A

-0.98

0.00559

0.0551

0.0271

0.0431

0.432

0.230

702.5
0.1

0.4

8E-04,-9E-04,
1E-03,-0.01,

-O.O1

-0.65

N/A

-0.92

418.538

(tb/in)

0.0201

0.0302

0.00741

0.0715

0.999
0.130

404.3

3.7

2.0

7E-04

-0.83

-0.96

-0.96

0.0197

0.0293

0.00730

0.0838

0.881

0.127

398.4
6.5

2.9

6E-04,-0.02,
-O.05

-0.83
-0.92

-0.91

0.0268

0.0378

0.0151

0.0982

1.400

0.190

592.9

3.3
2.6

8E-04,
-0.07

-0.78

-0.93

-0.92

0.0265
0.0408

0.0128

0.122

1.295

0.186
589.9

7.1

4.2

7E-04

-0.75

-0.87

42.86

t Lower bound.
$ Stiffenersare in tension.

a:i = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) < oo
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Table B.2- Geodesically Stiffened Shell Design Data (Continued).

2x1.___._6

::1 to (in)

z2 tgo (in)

z3 t+45 (in)

z4 tg (in)

zs hg (in)

Skin Thickness (in)
Cylinder Weight (lb)

surf. Load F_. (%)

COMPRESSION TORSION

1000

(tb/in)

O.O05t

0.0360

0.0124

0.100
1.238

0.131

427.5

8.8

2700

(tb/in)

o.oost
0.0557

0.0238

0.113
1.223

0.217

690.1

7.4

0.0117

0.0315

0.00505

0.0991
1.28

0.1065

352.4

17.2

1000

(lb/in)

0.0162

0.0474

0.005t

0.146

1.682
0.147

502.0

24.5

Stiff'. Weight Frac. (%)

Buckling

Skin Strength

Stiff. Strength T

Stiff. Strength C
2x2,4

zl to (in)
z2 tgo (in)

za t±4s (in)

z4 t a (in)

zs hg (in)

Skin Thickness (in)

cytincterweight (tb)
stiff. Lo_ Frae. (%)
Stiff. Weight Fra¢. (%)

Buckling

Skin Strength

Stiff. Sla-ength T

Stiff. Strength C

6.3
0.004

-0.80

N/A
-0.90

o.oost
0.0298

0.00822

0.180

1.64

0.102
400.0

39

22

8E-O4,-TE-03,

-0.02,-0.01,

-0.03,-0.03
-0.83

N/A

-.0.88

4.5

9E-04,-0.08,
-0.04

-0.69

N/A
-0.79

O.O05t
0.0483

0.0102

0.296

1.85
0.147

611.6

50.7

26.7

8E-04,

-0.074

-0.70

N/A
-0.78

8.0

8E-04

-0.81

..0.89

-0.88

0.0105

0.0271

0.005

0.0732
1.35

0.0952

319A

9.5

9.3

9E-04

-0.80

-0.91

-0.90

10.7
8E-04

-0.66

-0.81

-0.79

0.0205

0.0366

0.00501

0.117
1.4.47

0.134

458.9
17.8

11.0

3E-04

-0.62

-0.83

-0.80

t Lower bound.

z_ = Design Variables
Constraints g(i) axe feasible when negative, violated when positive, range: -1 < g(i) < e_
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Table B.2 - Geodesicaily Stiffened Shell Design Data (Continued).

: i:.......... ¸

2x32

zl to (in)

z_. t9o (in)

x3 t+4s (in)

z4 _g (in)
zs hg (in)
Skin Thickness (in)

Cylinder Weight (Ib)

stiff. Load Fr_. (%)
Stiff. Weight Frac. (%)
Buckling

Skin Strength

Stiff. Strength T

Stiff. Strength C

2x48

zl to (in)

z_. tgo (in)
:a t:_4s (in)

z4 tg (in)

xs hg (in)
Skin I"rtickness (in)

Cylinder Weight (/b)

s_. Load Fr_. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength
Stiff. Strength T
Stiff. Strength C

COMPRESSION TORSION

o.oo5t
0.0245

0,00599

0.213

1.32

0.0779

360.2

53
30

0,001,
-0.O6

,0.85

N/A

,0.88

0.00st
0.0143
0.00943

0.i58

1.093

0.0762

328.9

52

29

"/E-04,-0.03,

-0.04,0.05,
-0.05
,0.87

N/A

-0.88

0.005t
0.0357

0.0120

0167

1.54

0.130

552.8

57.6

28.6

9E-04

-0.74

NIA

43.78

O.O05t
0.0266

0.0135

0.180

1.261

0.117

484.4

53

26

8E-04,

-0.06

-0.73

N/A
-0.74

0.00929
0.0243

0.005f

0.0607

1.34

0.0874

298.2

14.8
10.8

8E-4,
-3E-4,

7E-4,

-0.17,
-0.007

-0.78

-0.92

-0.91

1000

(tb/i.)

0.0126

0.0339

O.O05 t

0.106

1.68

0.1130

412.3
21.1

16.7

3E-4,
0.001,

-3E-4,
-0.002,

,0.002,
-0.01

-0.58

-0.85

-0.83

t Lower bound.

zi = Design Variables
Constraints 9(i) are feasible when negative, violated when positive, range: -I _<g(i) < co
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

zt to (in)

x2 tgo (in)
za t±45 (in)

z4 tg (in)
z_ hg (in)
Skin Thickness (in)

Cylinder Weight (lb)

stiff. Load F_. (%)
Stiff. Weight Frac. (%)

Buckling
Skin Strength

Stiff. Strength

zl to (in)
z_. too (in)

za t±45 (in)

• 4 tg (in)

Zs hg (in)
Skin Thickness (in)

Cylinder Weight (lb)

salt. Load r-me. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength

Stiff.Streng'da

COMPRESSION

o.oo5t

0.0329

0.0133

0.177

0.974
0.129

495.3

39.0

21.0

7E -04
-0.65

-0.73

O.O05t

0.0465

0.0126

0.1436

0.735

0.154

544.1

15.0

14.0

9E-04

-0.54

-0.77

t Lower bound.

zi = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) < oo
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

3x24

zl to (in)

z_. tgo (in)

z3 t±45 (in)

z4 tg (in)

z5 ha (in)
Skin Thickness (in)

Cylinder Weight (lb)

stiff. Load Frac.(%)
Stiff. Weight Frac. (%)
Buckling

Skin Strength

Stiff. Strength Tension

Stiff. Strength Comp.

4x24

zl to (in)

z2 tgo (in)

xz t±4s (in)

x4 t s (in)

z5 hg (in)
Skin Thickness (in)

Cylinder Weight (lb)

sty. toad Frae. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength

Stiff. Strength Tension

Stiff. Strength Comp.

TORSION

418.538

(tb/Tn)

0.00642

0.0296

o.oost
0.0969

0.886
0.0920

309.3

19.4

9.4

0.002
-0.80

-0.89

-0.87

0.0837

0.0272

o.oost
0.0734

0.876

0.0912

301.5
18.8

7.9

-0.001,
-0.15

-0.80

-0.88

-0.86

t Lower bound.

xi = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) <
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Table B.2- Geodesically Stiffened Shell Design Data (Continued).

.--.. . ...:::!_"-

lxl...._2

zi to (in)
z: tgo (in)
z3 t±4s (in)
• 4 t9 (in)
z5 hg (in)
Skin Thickness (in)
Cylinder Weight (lb)
stiff, toad Z_. (%)
Stiff. Weight Frac. (%)
Buckling
SkinStrength

Stiff.SwengthCornp.
==,

3x36
zl to (in)
z2 too (in)
z3 t±4_ (in)

z4 t_ (in)
Zs h9 (in)
Skin Thickness (in)
CylinderWeight (lb)
s_. LoadFr-a:.(%)
Stiff. Weight Frac. (%)
Buckling

SkinStrength

Stiff.StrengthComp.

COMPRESSION

2 0o
(tb/in)

o.oost
0.0486
0.0167

0.355
1.87
0.174
628.7
29.5

15.8
9E-4, -0.06
-0.67

-0.78

0.005t
0.0386
0.0144
0.235
1.07
0.145
554.0
39.9
20.3
-9E-4,
-0.004,
-0.006,
-0.01,
4).04,
-0.04
-0.69
-0.75

t Lower bound.

zi = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) <
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Table B.2 - Geodesically Stiffened Shell Design Data (Continued).

b - Skin Laminate = [-45/+ 45/90]s.

2x48

zl tgo (in)

z_. _±45 (in)

z3 ta (in)

z4 ha (in)

Skin Thickness (in)

Cylinder Weight (lb)

surf. Load Frac. (%)
Stiff. Weight Frac. (%)
Buckling

Skin Strength

Stiff. Strength

COMPRESSION

1000

(Ib/in)

0.0145

o.oost
0.191

1.09

0.049

266.2

69.0

4,1.0

8E -04

-0.92

-0.85

c - Skin Laminate = [90]r.

2x48
zl tgo (in)

z2 t 9 (in)

z3 hg (in)

Skin Thickness (in)

Cylinder Weight (Ib)

s_. tom F_. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength
Stiff. Strength

COMPRF__SION

1000

(lb/in)

0.0176

0._3

0.860

0._5

_2.8

_.0

_.7

3E_,
-0._

-0._

-0.89

t Lower bound.

zi = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) < oo

=
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Table B.2 - Geodesicaily Stiffened Shell Design Data (Continued).

d - Skin Laminate = [90/o]s.

zl to (in)
z_. tgo (in)

t3 tg (in)
z4 h9 (in)
Skin Thickness (in)
Cylinder Weight (lb)
stir. Load (%)
Stiff. Weight Frac_ (%)
Buckling

Skin Strength
Stiff. Strength Tension
Stiff. Strength Comp.

 RS:ON

1000
(lblin)

0.0158
0.0325
0.162
1.47
0.0967
384.1
43.1
23.4

6E-4,
6E-4,
-0.015
-0.70
-0.76
-0.73

zi = Design Variables
Constraints 9(i) are feasible when negative, violated when positive, range: -1 < 9(0 < _o

...-.

-.-_, :_. .- ....

r
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Table B.2- Geodesically Stiffened Shell Design Data (Continued).

e- 24x12xl Mesh.

Lr.x_

xl to (in)

z_. tgo (in)

z3 t+4s (in)

z4 tg (in)

zs ha (in)
Skin Thickness (in)

Cylinder Weight (Ib)
Stiff. Load Frac.(%)

Stiff. Weight Frac. (%)

Buckling

Skin Strength

Stiff. Strength T

Stiff. S_ngth C

2x48

zx to (in)

z2 tgo (in)

z3 t±4s (in)

z4 ta (in)

zs ha (in)

Skin Thickness (in)

Cylinder Weight (Ib)

stiff. Load Frae. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength

Stiff. Strength T

Stiff. Strength C

COMPR

N_= 1000

O.O05t

0.0301

0.0100

0.160

1.43

0.110

404.1

16.7

5E--4,
-3E-4,

-0.02,
-0.05

o.oost
0.0178

0.0105
0.140

0.906
0.0875

3372,

21.0

9E-4,

-7E-4,
-0.04

£SSION

N, = 2700

O.O05t
0.0494

0.0116

0.291

1.68

0.155

618.1

23.6

6E-04,
-0.01,

-0.03,
-0.03
-0.04

o.oo51
0.0278

0.0142

0.183

1.27

0.122.

502.8

25.9

7E-04,

-0.02,

-0.08,

-0.09,

-0.09,
-0.1
-0.70

-0.83

-0.73

t Lower bound.

zi = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 _< g(i) < oo
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Table B.3 - Geodesically Stiffened Shell Design Data
Combined Compression and Torsion.

. ... - .

... ... :.....
... . .

zl to (in)

z2 tgo (in)

z3 t±4s (in)

z4 tg (in)
z5 h a (in)
Skin Thickness (in)

Cylinder Weight (lb)

Stiff. Load Frac. Tots. (%)

Stiff. Load Frac. Comp. (%)

Stiff. Weight Fmc. (%)

Buckling

Skin Strength
Stiff. Streng_ T

Stiff. Strength C

2x2...../4

Zl to (in)

z,. tgo (in)

z3 t,-_4s (in)

z4 tg (in)

zs ha (in)
Skin Thickness (in)

Cylinder Weight (lb)

stiff. LoadFrac.Tots.(%)
Stiff. Load Fme. Comp. (%)

Stiff. Weight Free. (%)

Buckling

Skin Strength

Stiff. Strength T

Stiff. Strength C

COMBINED COMPR ESSION AND TORSION

N= = 1000,

N= v = 1000 lb/in

0.0251

0.0478
0.0188

0.122

1.48

0.221

699.5

7.2

0.8

3.9

9E-4,
-0.02

-0.84
-0.92

-0.87

0.OO501

0.0596

0.O0651

0.155

1.50

0.i42

542.4

26.1

40.0

2O.2

O.OOl,
-0.01

-0.71
-0.96

-0.72

Nz = 2700,

,V_y = 418.5 lb/in

0.00935
0.0581

0.0288

0.0651

1.24

0.250

773.3

3.8

0.5

1.5

-8E-04,

1E-3,

-0.01,
-0.03

-0.70
-0.97

-0.90

O.O05t

0.0526
0.00787

0.312

1.73

0.147

605/

37.5

31.6

26.2

8E-04,
-0.08

-0.70

-0.83

-0.73

I Lower bound

zi = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: -1 < g(i) < oo
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Table B.4 - Geodesically Stiffened Shell Design Data
Other Designs Obtained in Torsion.

2x___!
xl to (in)

x2 tgo (in)
za t±4s (in)

z4 t a (in)

zs hg (in)
Skin Thickness (in)

Cylinder Weight (Ib)

stiir. Load r:rac. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength

Stiff. Strength T
Stiff.StrengthC

2x8

zt to (in)

x_ tgo (in)

z3 t±4s (in)

z4 tg (in)

zs hg (in)
Skin Thickness (in)

Cylinder Weight (Ib)

sarr. Load r:rac. (%)
Stiff. Weight Frae. (%)

Buckling

Skin Strength

Stiff.StrengthT

Stiff. Strength C

TORSION

0.0206

0.0285

0.00716

0.146

1.063

0.127

404.8
6.2

4.6

7E -04

-0.83

-0.96
-0.96

0.0182

0.0273

0.005t
0.180

2.37

0.111

401.4

14.6

115.8

0.003

-0.83

-0.87

-0.86

t Lower bound.

zi = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 S g(i) < oo
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Table B.4 - GeodesicaHy Stiffened Shell Design Data
Other Designs Obtained in Torsion (Continued).

2x1___6

xt to (in)

z2 tgo (in)

x3 t±4s (in)

z4 t a (in)
z5 h a (in)
Skin Thickness (in)

Cylinder Weight (lb)
stiff. Load Frac. (%)
Stiff. Weight Frac. (%)

Buckling

Skin Strength

Stiff. Strength Y

Stiff. Strength C

TORSION

418.5

(Ib/in)

0.0107

0.0272

0.00502

0.150

1.95

0.0958

355.4

35.9

27.3
8E-04

-0.84

-0.91

-0.90

zi = Design Variables
Constraints g(i) are feasible when negative, violated when positive, range: -I < g(i) < oo

"-: ., .-::'. i - .

:..-:- ..: ;-_::.:" :!"
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Table B.5 - Conventionally Stiffened Shell,(Compression and Torsion).

2x8
zl to (in)
z2 tgo (in)
zz t+as (in)
z4 t, (in)
z5 h, (in)

z6 t, (in)

zr h, (in)
Skin Thickness (in)

Cylinder Weight (lb)
Stiff. Load Frac. (%)
Stringer Weight Frac. (%)
Ring Weight Frac. (%)
Buckling

Skin Strength
Stringer Strength
2x24 and 2x32

zl to (in)
z_ tgo (in)

za t±4s (in)

=4 G (in)
xs h, (in)

=6 t, (in)

zr h, (in)
Skin Thickness (in)
Cylinder Weight (lb)
Stiff. Load Frac. (%)
Stringer Weight Frac. (%)
Ring Weight Frac. (%)
Buckling

Skin S_ngth
Stringer Strength

COMPRESSION

1000 2700

(lb/in) (lb/in)

o.oo5t o.oo5f
0.0258 0.0424
0.00767 0.00976
0.479 0.655
2.11 2.87

0.04t 0.0575

OAf 0.592

0.0922 0.134
373.9 580.9
55.7 65.5
24.7 29.5
0.2 0.3

-0.002, -8E-4,
8E-4, 9E-4,
-3E-4, 7E-4,
-0.003, -0.009,
-0.009 -0.01,

-0.015
-0.87 -0.79
-0.88 -0.79
2x32 ...... 2x24

o.oost o.oo5t
0.0170 0.0325

0.00899 0.0119

0.228 0.402
1.06 1.43

0.04t 0.0725

0.4t 0.882

0.0799 0.123
332.3 532.6
53.5 62.3
29.4 27.5
0.2 0.5

-0.003, -0.003,
-8E-4, -0.001,
-0.001, 7E-4,
-0.001, 0.001,
-0.002, -0.003,
-0.004, -0.01,
-0.007 -0.01
-0.87 -0.78
-0.8? -0.78

418.5

(lb/in)

0.0164
0.0304
0.00516
0.176
2.49

0.0922

1.20
0.114
392.3

N/A
10.2
1.0
4E--4,
-0.002,
-0.06,
-0.23

-0.79

2x32

0.00934
0.0190

o.oo5t
o.ost
2.30

0.0843

1.13
0.0767
304.3
N/A
22.0
1.3

-1E-.4,
-0.03,
-0.05
-0.06
-0.1

-0.74

N/A

TORSION

1000

(tb/in)

0.0236
0.0442
0.00821
0.0959
5.00

0.0951

1.4537
0.169
563.0
N/A
7.9
0.9
-0.005,
-0.002,
0.02,
-1.9
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Table B.5 - Conventionally Stiffened Shell, (Continued).

4x__88
xl to (in)
x2 tgo (in)
• a t+4_ (in)

xa t, (in)
x5 h, (in)
x6 t, (in)
xr h_ (in)
Skin Thickness (in)
Cylinder Weight (lb)
Stiff. Load Frac. (%)
Stringer Weight Frac. (%)
Ring Weight Frac. (%)
Buckling

Skin Strength

TORSION

418.5

"(Ib/in)

0.0115
0.0243
0.00852

0.08t
2.00
0.0674
0.925
0.0958
343.7
N/A
4.2
2.2

-0.003,
0.001,
-9E-4,
-0.005,
-0.02,
-0.02
-0.84

t Lower bound.

zi = Design Variables
Constraints 9(i) are feasible when negative, violated when positive, range: -1 < g(i) < oo

. .. - :'. .

--:-.
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Table B.6 - Conventionally Stiffened Shell Design Data
Combined Compression and Torsion.

2x8

zl to (in)

z_. tgo (in)

z3 t±4s (in)

z4 tg (in)

zs hg (in)
z6 tr (in)

z7 h, (in)

Skin Thickness (in)

Cylinder Weight (Ib)
Stringer Load Frac. Comp. (%)

Stringer Weight Frac. (%)

Ring Weight Frac. (%)
Buckling

Skin Strength

Soft. Strength C

COMBINED COMPI{-'SSION AND TORSION
Nz = 1000,

N_y = 1000 lb/in

0.0300

0.0520

0.0110

0.151

3.26
0.114

1.18

0.208
684.1

15.4

6.6
1.0

0.001,
0.001

-0.01

-0.02

-0.79
-0.93

Nz = 2700,

N_y = 418.5 lb/in

0.00500

0.0590

0.00881

0.733

2.57

0.0611
0.710

0.163

671.4

64.1
25.6

0.4

-0.003,
0.001,

6E-4,
4E-4

-0.002

-0.007

-0.02

-0.79

-0.79

zl = Design Variables

Constraints g(i) are feasible when negative, violated when positive, range: -1 < #(i) < oo

..- ..

¸ !i
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Appendix C

Organization of the Data Base in-the Context
of Global/Local Analysis and Design

The modifications made to TBOP to accomodate a global/local analysis strategy are

described in this appendix. Aithough the implementation of these new capabilities share

several subroutines with TBOP, it is run as a separate program called TBOPGL. The

additional information required for the implementation of the new capabilities is stored

in different libraries that contain either new datasets or datasets that have already been

documented in Refs. [27,40]. Consequently, only the new libraries and datasets are

described in this Appendix. This description is followed by a discussion of the new

processors that have been developed.

C.1 New Libraries and New Datasets

The organization of the libraries is shown in Fig. C.1. As indicated in this figure,

the database now includes a master library and several sets of two libraries. Each set

contains the information concerning either a model or an interpolation region. In this

figure, the generic name for the file that contains the data base is "EX". This is the only

part of the filenames that can changed. For example, if "EX" is changed for "TEST",

then TBOPGL will expect the data concerning the global model to be in libraries named

"TEST1.L01" and "TEST1.L02". Note that the filenames of the libraries must be in

capital letters. Among all the libraries required by TBOPGL, the ones that contain the

information concerning the interpolation regions are those that require the most input

from the user. All the other libraries are either identical to those required by TBOP or

automatically set up by TBOPGL.

The master library shown at the top of Fig. C.1 contains the information related
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to the optimization problem. The datasets stored in this library are listed in Table C.1.

As indicated in this table, the datasets that define the design variables, the constraints,

the objective functions, as well as the values of the constraints and their gradients are

all stored in the master library. Moreover, this library also contains the information

concerning the coordination work that must be performed between the global and local

models following a move in the design space. It is important to remember that this is

the only library from which TB20 reads data before calling the optimization program.

The data concerning the finite element analysis and the optimization problem of each

model, being global or local, are defined using 2 libraries. As already explained in Ref.

[27], the reason for using two libraries is to avoid using the *PACK directive to delete

the information that has become obsolete following a move in the design space. Except

for few datasets that are automatically installed by TBOPGL, this library contains the

same datasets that are contained in the two libraries used by TBOP to define the finite

element model and the optimization problem.

Finally, each local model has several sets of two libraries associated with it. They

contain the information necessary for the interpolation of the static displacement fields

from the global model to the local model. The reason for using several sets of two

libraries, rather than only one set, is to allow TBOPGL to design models that contain

several interpolation regions which necessitate the utilization of as many spline matrices.

For example, consider the design of a stiffened panel where one of the sEn-stiffener

intersections must be studied using a local model. In this case, the skin and the stiffener

contained in the local model are defined using separate interpolation regions. The inter-

polation of the displacement fields must be performed for each interpolation region and

each of these sets of libraries contains all the information required for these calculations.

The library whose name ends with "C.L01" contains the information concerning the

coarse mesh that discretizes the interpolation region and the library whose name ends
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. . . .... _ .

_ter

Library

EX.L01: All the info_don

required by ADS u) perform the
optimization

I I
Global Local L

Model Model 1 Mo_el 0-1) IC_tains the info_don tff_ ]t_t Testbed
EX1.L01 [ EEX 00_ ' [nee._ m perfo_ theEX 1.L02 "'" IEXj.L02

i I
InterpolationInterpolation Interpolation

region 1 region 2 region k

I_IRJ.01 IEX22R_01ZX_.0X
I EX22C.L01 EX21_.L01

For each local
model

Fig. C.1 - Organization of the Libraries.
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with "R.L01" contains the information concerning the refined mesh that discretizes the

same region. The datasets contained in each library are listed in Tables C.2 and C.3. In

these tables, the datasets indicated as input datasets must be provided by the user. Also,

the dimensions of several datasets are indicated at the end of the description of their

content.

C.2 New Processors

The implementation of the global/local analysis and design procedure has also re-

quired the development of two new processors. The first new processor developed is

called MISC. This processor realizes two different operations. The first operation con-

sists of extracting, from a nodal solution vector corresponding to the global model, the

components associated with a specific interpolation region. This operation is required

twice for every design iteration. It must first be performed after the exact analysis of

the global model to extract, from the static displacement solution, the components cor-

responding to the nodes belonging to each interpolation region. Each of these vectors is

then processed by INTS [16], the processor in charge of computing the spline interpola-

tion required to the generation of refined displacement fields. The same operation must

also be performed during the computation of the constraint derivatives with respect to

the design variables. For each design variable, the static displacements corresponding to

a perturbed design must be extracted from the global nodal solution and separate nodal

vectors must be created for each interpolation region. This is required for the calculation

of the term -K_,I--_. in Eq. 6.4.

The second operation realized by the processor MISC consists of forming nonzero

boundary condition vectors for each local model. This operation follows the extraction

operation described above. It consists of assembling the total vector of nonzero boundary

conditions for each local model. This is accomplished by reading the refined vectors of

196



..-_ : • 7...

/

boundary conditions generated by INTS for each interpolation region.

The second new processor is called CRDN. CRDN sets up and realizes the coordina-

tion work that must be performed between the different models following a move in the

design space. It is first called to set up the coordination work. This initial step consists

of specifying what characteristics of a model must be updated when the value of a design

variable defined in another model is changed. Secondly, CRDN is also called by the

procedure des_ana_i_er to realize the coordination work. This call occurs immediately

after a new design point has been computed by the optimizer.

The global/local analysis and design strategy has also been built using CLAMP

procedures. Two of these procedures implement the iterative scheme required for the

calculation of an optimal design. Two others perform the calculation of the quantities

required for the computation of the constraints and their derivatives. The same procedures

already described in Chapter 3 and in Ref. 27 are used here. Only minor changes have

been made to accomodate multiple models and compute the term -K1,1 _ of Eq. 6.4.

These procedures will consequently not be discussed here.

An example of a runstream that can be used to perform the global/local analysis and

design of a structural model is shown in Fig. C.2. The runstream corresponds to the

example presented in Section 6.3.1. In-line documentation that details the steps that are

performed by each block of commands have been added to the runstream.
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Table C.1 - Datasets Stored in Master Library.

Da_et Name Content

ADS.RTN.I.1
ADS.PMTR.I.I
OBJ.FCN.im. 1

DESN.VARS.im. 1

BUCK.CONS.ira. I

BCON.EVAL./m.I

DISRCONS.im. 1

DCON.EVAL.im. 1

PSTR.CONS.im.1

PCON.EVAL.im. 1

COOR.DINA. from_modei, to_model

Variable i_fo returned by ADS
Tables wk and iwk returned by ADS
Definition of the objective function
for model/m

Definition of the design variables
for model/m

Definition of the buckling constraints
imposed on model ira
Values of the buckling constraints
and gradients of the computed eigenvalues
for model/rn

Definition of the displacement constraints
imposed on model im
Values and gradients of the displacement
constraints for model im

Definition of the point strain constraints
imposed on model im
Values and gradients of the point strain
constraints for model ira
Definition of the coordination work that

must be performed between model
from_model and model to_model
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Table C.2- Datasets Corresponding to the Coarse Mesh
for Each Interpolation Region (...C.L01).

-.-...

_ . . ..: -. .

Dataset Name Content

JLOC.BTAB.2.5

(input)

ALTR.BTAB.2.4

GLOB.NODE.I.1

(input)
SPLI.*.I
STAT.DISP. 1.1

APPL.MOTI.8.idv

The coordinates of the nodes mapped onto a
2D plane surface. Node I is located at the

origin of the coordinate frame (nncstx3).
The orientation of the reference frame with

respect to the global reference frame+
Node numbers in the global model (nncs)

All the datasets generated by the processor SPLN
Static displacements of the nodes contained in this
interpolation region extracted from the static response
computed with the global model (nncsx6).
where idv represents the design variable number.
Static displacements of the nodes contained in this
interpolation region extracted from the static response

computed with the global model and corresponding
to a configuration where the idv design variable
has been perturbed (nncsx6)..

t nncs represents the number of nodes in the coarse mesh discretizing the interpolation

region. Similarly, nnrs represents the number of nodes in the refined mesh discretizing

the interpolation region.

t This dataset is not actually used. The processors SPLN and INTS check for the

occurrence of this dataset in the lib_but, in our case, the information that it contains

is not actually read.
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Table C.3- Datasets Corresponding to the Refined Mesh
for Each Interpolation Region (...R.LO1).

.•. ,._ -,%:

Dataset Name Content

JLOC.BTAB.2.5

(input)

BOUN.NODE.I.I

(input)

LOCA.NODE. 1.1

(input)

JDF1.BTAB.1.8

APPL.MOTI. 1.1

APPL.MOTI.9.idv

The coordinates of the nodes mapped onto a
2D plane surface. Node 1 is located at the
origin of the coordinate frame (nnrsx3).
Nodes located on the boundary of the local model.
The node numbers correspond to the numbering used
in the local model. This information is used to

build the applied motion dataset for the local model
(number of nodes on the boundary of the interpolation
region).
Nodes located on the boundary of the local model.
The node numbers correspond to the numbering used
in the interpolation region. This information is used
to build the applied motion dataset for the local model
(number of nodes on the boundary of the interpolation
region).
Number of nodes contained in the interpolation region
and the number of degrees of freedom at each node. This
information is used to build the applied motion
dataset for the local model

Boundary conditions that must be applied at the
boundary of the interpolation region. This dataset is
used to form the applied motion dataset for the
local model (nnrsx6).
where idv represents the design variable number.
Refined static displacement field for this
interpolation region The original displacement field
corresponds to the the static response
computed with the global model and corresponding
to a configuration where the idv design variable

has been perturbed (nrLrsx6).
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cd /scr/gendron
cp /csm/prc/proclib.gal proclib.aug

chmod u+w proclib.aug
/bin/time testbed <<\,EOI,
*set echo off

Assume only 1 library procedure is used.

all the procedures must have different names!!!

,open 28 proclib.aug

*open 1EX3.L01 /new . Must use capital letters for

all library names

This is the master library, it contains:

Design variables
Constraints

ADS parameters
Coordination

*set plib = 28
,define/a filename='EX3' . Capital letters

The following information is model independent

*add '/usr/ul/gendron/expe/branch_on_info.prc'

*add '/usr/ul/gendron/expe/des_ana_iter.prc'

,add '/usr/ul/gendron/expe/analysis.prc'

*add '/usr/ul/gendron/expe/derivative.prc'

*def/i numb_models = 2 number of local models is assumed

to be = to numb_models - i.

*define/i nosm[l:2] == 0,1 An array that indicates the

Number Of SubModels

associated with each local model.

Dimension: number of models

First component goes with the global model

which does not have any
submodels associated with it

(Consequently, first component always O)

Assume library names are <filename>//<im>.lOl

and <filename>//<im>. 102,

where <filename>//<im>.101 and

<filename>//<im>. 102 contain the

information regarding model <im>

,add '/usr/ul/gendron/expe/pwholeg.data I
*add '/usr/ul/gendron/ezpe/pwholel.data

*define/a filename='EX3' Capital letters

*define/i maxiter=lO

Fig. C.2 - Runstream Used for Global/Local Analysis and Design.
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Control of ADS

*def/i strain9

*def/i opt=5
*def/i oned=7

*def/i prinz=3552
*def/i ndv=0

*def/i ncon=0

Strategy number

Optimization algorithm

ID search algorithm

Printing index

Temporarily (Computed by DDVR)

Temporarily (Computed by TB20)

*put 1ADS.KTN.I.I ! Capital letters

*put i 'ADS.PMTK. I.I'
*find dataset I ADS.PMTR.I.I /seq--es_idss

*m2g /name==ndv

*m2g /name==ncon

*m2g /name==strat

*m2g /name==opt

*m2g /name==oned

*m2g /name==print

/type--i

/type=i

/type=i

/type=i

/type=i

/type=i

1 <es_idss> PARAM.1

1 <es_idss> PARAM.2

1 <es_idss> PARAM.3

1 <es_idss> PAKAM.4
1 <es_idss> PAKAM.5

1 <es_idss> PAKAM.8

libraries containing the information regarding model 1

The following information is model dependent

,close 1

*open 1 EX31.L01 /new

*open 2 EX31.L02 /new

*define/f load_u [1] --0.0

*define/f load_v [I]---10000. Oe+O0

,define/f load_w [I] =--0. Oe+O0

,define/i set_u [1] --=0

*define/i set_v[l] ----1

*define/i set_w[l] -=0

*define/i fin_cliff [I]----0

*define/i ntel [l] ----1

*define/i nsubl [1] =--1

*def/i imp_disp [I] ==I

[xqt opti
load_ratio

initialize Idi-1 nodes=IT5,318:325:1

end

stop

Fig. C.2- (Cont'd).
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[xqt tab

*call MESH_JLOCG

-call BNDYG

[xqt AUS

TABLE(NI=16,nj=I): OMB DATA I i Table of mat.

I=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

J=1: lO.Oe+06 0.3 10.0e+06 3.8462e+06 3.8462e+06

3.8462e+06 .0 .0 1.55e-05 >

.01330 .01270 0.01355 0.01184 0.003386 0.01355

TABLE (NI=3,NJ=l,itype=O): SUB LAM 1 1

j s 1 : I 0.10 0.0

*open 3 EX321G.L01

[xqt dcu

copy I 3 JLOC BTAB 2 5

stop

*close 3

[xqt bdlm

*put 1BLD.LAM.I.I

build=l usingsl

stop

[xqt LAU

*call MESH_CONG

*call ES ( function = 'DEFINE FREEDOMS'; --

es_proc - <es_proc>; ----

es_name = <es_uame[1]>; ---

es_pars = <as_pars[l]> )

[xqt E

[xqt _SEQ

reset maxconz75

[xqt TOPO

reset maxsub = 60000

reset iramap - 9000

[xqt AUS

sysvec: appl motion 1 1
*call MOTIONG

prop.

>

Fig. C.2- (Cont'd).
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[xqt OPTI
ddvr

Defining design variables

dv=l thickness seczionnumber= 1

in- 0.01,5.0

save THIKD_W0KD-- !

end

plynumber-l --

Define the constraints

conszraint

define buckling=l eval=l va!ue=l.0

save TEIKD_WOKD- !

end

obj ec'.ive

defize weight rho=0.057 third_word=l

end

stop

don't need kmap and amap in library 2

•delete 1KMAP..,.s

•delete 1AMAP..,.s

[xqt DCU

copy 1 2

stop
•enable 1 KMAP..=.=

•enable i AMAP..=. =

•open 2 EX321C.L01

[xqt dcu

copy I 2 ALTK BTAB 2 4

[xqt SPLN

RESET INLIB=2

KESET SLIB=2

RESET DEGKEE=I

k

Fig. C.2 - (Cont'd).
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Sezting up the spline interpolation

SUKF 1 XLOC=I, YLCC=2, SYM=0
INPUT

BOUN 1

0.0,0.0,0.0 10.0,20.0,0.0
StOD

*clOse 2

Need to copy the definition of the

optimization problem in master library

*open 5 EX3.L01 This is the master library

copy i 3 DESN VAKS I 1

copy i 3 BUCK CONS I i

cop7 1 3 BCON EVAL 1 1

copy 1 30BJ FCN ! I
S'_CD

_[eed to close the libraries

corresponding zo model 1
*close I

azd open the library

corresponding to model 2.

*opez 1 EXS2.L01 /new

*ope: 2 EXB2.L02 /:ew

*def/i imp_disp [2]--=1

*defi:e/i set_u[2]==1

*define/i set_v[2] m=0

*defi_e/i set_w[2] ==0

-defi_e/e load_u [2] ==0.0

*defime/e load_v [2] ==0.0

*define/e load_w [2] ==0.0e+00

*define/i fin_dill [2]==0

*define/i ntel[2]---- 1

*define/i nsubl [2] ==I

[xqt opti

load_ratio

ini_-ialize Idi=l

end

stop

Fig. C.2 - (Cont'd).
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[xqz tab
*call MESH_JLOCL

*call BNDYL

[xqt AUS

TABLE(NI=IS,nj=I): OMB DATA I I TaSle of material proper_ies

I=!,2,3,4,5,6,7,8,9,10,11,12,13,14,15
3'=1: lO.Oe+06 0.3 10.0e+06 3.8462e+06 3.8462e+06 >
3.8_.62e+06 .0 .0 1.55e-05 >

.01330 .01270 0.01355 0.01184 0.003386 0.01355

TABLE (NI=3,NJ=l,itype=O): SUB LAM 1 1

J = ! : I 0.i 0.0

*open 3 EX321R.LOI

[zq_ dcu

copy ! 3 JLOC BTAB 2 5

stop
*close 3

[xqt bdlm

*put I BLD.LAM.I.1

bui!d=l using- I
StOD

[xqt LAU
-call MES__CONL

*-=_-__ES ( functio= - 'DEFINE FREEDOMS", --

es_proc - <es_proc>; --
esmame - <esm_ne[l]>; --

es_p_s = <es_pa.rs[l]> )

[xqt E
[xqt KSEQ
reset maxcon-T5

[xqt TOPO
reset maxsub - 60000

reset iramap - 9000

[xqt op%i
ddvr

dv=l thickness sectionnumber=l

save THIRD_WORD=2

end

plynumber=l in= 0.01,1.0

Fig. C.2- (Cont'd).
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constraint

define pointstrain=! integ-pt=9 --
value!t=0.002 valuelc=0.002 --

value2t=0.002 value2c=0.002 value12=0.005 --

type=EX97 group=l --
element=69

save THIKD_WOKD=2

end

stop

dcn't need kmav and amap in library 2

*delete i KMAP..*.*

*delete 1 AMAP..*. =

ixqt DCU

copy i 2

stop
*enable 1 Y.MAP..*.*

*enable 1 AMAP..*. _

*close 2

Need to copy the definition of the

optimization problem in master library

*open 3 EX3.LOI This is the master library

[xqt DCU

copy 1 3 PSTR CONS 2 1

copy 1 3 PCON EVAL 2 1

stop

End of model dependent definitions

*close 3

*open 1 EX3.L01

setting up the coordination problem
ixqt CKDN

initialize

from_model=l

to_model=2

dv= I

save

end

stop

model i model 2

thickness sectionnumber=l plynumber=l

L:.....i

Fig. C.2- (Cont'd).
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[xq: TB20
ini_ia!ize /modify

modify /itrmop=2

modify /i_rmst=2

modify /iscal=O

.modify /j_max=50

modify /delobj=O.0!

modify /delstr=O.Ol

modify /rmvlmz=O. 20

stop

[xq_ TB20
OPTIMIZE

stop

itrmop=2

iZrmst=l

jtmax = 50

Start the iterz_ive process:

*ca!! des_ana_iter ( idi

numb_models = <numb_models>; --

maxi-.er = <maxi_er> ; --

filename - <fi!ename>)

[xq_ exi_

\.EO_-

Analysis <-> Design

=2; --

°

Fig. C.2- (Concluded).
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